• Title/Summary/Keyword: brown copra meal

Search Result 3, Processing Time 0.019 seconds

The Preparation of Crystalline Mannobiose from Brown Copra Meal Using the Enzyme System and Yeast Fermentation

  • Park, Gwi-Gun;Chang, Hak-Gil
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.194-198
    • /
    • 1993
  • ${\beta}-1$, 4-Mannobiose was prepared by the enzymatic hydrolysis of brown copra meal and the subsequent elimination of mono-saccharides from the resultant hydrolysate with a yeast. The enzyme system hydrolyzed brown copra meal and produced monosaccharides and $\beta$-1, 4-mannobiose without other oligomers at the final stage of the reaction. Brown copra meal (30 g) was hydrolyzed at $50^{\circ}^C$ and pH 5 for 48 hr with the crude enzyme solution (300 ml) from Penicillium purpurogenum. By the elimination of monosaccharides from the hydrolysis products with a yeast (Candida parapsilosis var. komabaensis k-75), 5.2 g of crystalline mannobiose was obtained without the use of chromatographic techniques. After 50 hours of yeast cultivation, the total sugar content fell from 3.5% to 2.4%, and the average degree of polymerization rose from 1.8 to 2.2.

  • PDF

Separation and Identification of Galactosylmanno-oligosaccharides from Hydrolyzate of Brown Copra Meal by Trichoderma β-Mannanase

  • Park, Gwi-Gun
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.292-295
    • /
    • 2008
  • Three kinds of oligosaccharides were obtained from the hydrolysate of brown copra meal galactomannan by a purified extracellular ${\beta}$-mannanase from Trichoderma sp. These oligosaccharides were identified as Man-Man, ${Gal^2}{Man_3}(6^2 mono-O-{\alpha}-D-galactopyranosyl-4-O-{\beta}-D-mannotriose)$, and ${Gal^2}{Man_6}(6^2-mono-O-{\alpha}-D-galactopyranosyl-4-O-{\beta}-D-mannohexaose)$, where Gal- and Man-represent ${\alpha}$-1,6-D-galactosidic and ${\beta}$-1,4-mannosidic linkages, respectively. The mode of action of ${\beta}$-mannanase on brown copra meal galactomannan is described on the basis of the structure of these oligosaccharides.

Preparation of $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ by Bacillus sp. ${\beta}-mannanase$ and Growth Activity to Intestinal Bacteria (Bacillus sp.유래 ${\beta}-mannanase$에 의한 $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ 조제 및 장내세균에 대한 생육활성)

  • Kim, Sang-Woo;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • For the elucidation of substrate specificity to the brown copra meal by Bacillus sp. ${\beta}-mannanase.$, the enzymatic hydrolysate after 24 hr of reaction was heated in a boiling water bath for 10 min, and then centrifuged to remove the insoluble materials from hydrolysates. The major hydrolysates composed of D.P 5 and 7 galactosyl mannooligosaccharides. For the separate of galactosyl mannooligosaccharides, the supernatant solution of 150 ml was put on a first activated carbon column. The column was then washed with 5 l of water to remove mannose and salts. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol, at the flow rate of 250 ml per hour. The sugar composition in each fraction tubes was examined by TLC and FACE analysis. The combined fraction from F3 was concentrated to 30 ml by vacuum evaporator. Then put on a second activated carbon column. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol (total volume: 5 l), at the flow rate of 250 ml per hour. The eluent was collected in 8 ml fraction tubes, and the total sugar concentration was measured by method of phenol-sulfuric acid. The major component of F2 separated by 2nd activated carbon column chromatography were identified $Gal^3Man_4(6^3-mono-{\alpha}-D-galactopyranosyl-{\beta}-mannotetraose)$. To investigate the effects of brown copra meal galactomannooligosaccharides on growth of Bifidobacterium longum, B. bifidum were cultivated individually on the modified-MRS medium containing carbon source such as $Gal^3Man_4$, compared to those of standard MRS medium.