• Title/Summary/Keyword: brombenzene

Search Result 2, Processing Time 0.017 seconds

An Effect of Bromobenzene Treatment on the Liver Damage of Rats Previously Fed Low or High Protein Diet (단백식이 조건을 달리하여 성장시킨 흰쥐에 Bromobenzene 투여가 간손상에 미치는 영향)

  • 신중규;채순님;윤종국
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.894-898
    • /
    • 1994
  • To evaluate an effect of dietary protein on the liver damage, the bromobenzene was intraperitoneally injected to the rats fed a low or high protein diet and then the liver weight per body weight and serum levels of alanine aminotransferase (ALT) activities were determined to demonstrate the differences in liver damage between the groups fed low or high protein diet. Hepatic aniline hydroxylase (AH), glutthione (GSH) content and glutathione s-transferase(GST) activity were also determined to clarify causes of liver damage between the two groups. Increases of liver weight per body weight and serum ALT activities were higher in brombenzene treated rats fed low protein diet than those fed high protein diet. The increasing rate of hepatic AH activity was higher in bromobenzne-treated rats fed low protein diet than that in those fed high protein diet. Furthermore , hepatic glutathione contents and GST activities in bromobenzene-treated rats were higher in rats fed high protein diet than those fed low protein diet. In case of control group, the heaptic glutathione content and GST activity were also higher in rats fed high protein diet than those fed low protein diet.

  • PDF

Effect of GE-132 on the Hepatic Bromobenzene Metabolizing Enzyme System in Rats (유기게르마늄(GE-132)이 Bromobenzene의 대사계에 미치는 영향)

  • 김석환;조태현;최종원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.702-708
    • /
    • 1993
  • The study was attempted to elucidate the mechanism of GE-132(100mg/kg, p.o. for 6 weeks) on the metabolism of bromobenzene (460mg/kg, i.p. bid, for 2 days), which has potent carcinogenicity, mutagenicity and hepatotoxicity. It showed that activities of cytochrome p-450, aminopyrine demethylase and aniline hydroxylase, which have epoxide generating property, were not changed by GE-132 treatment. On the other hand, epoxide hydrolase was not changed but that glutathione S-transferase was significantly increased by GE-132 treatment. And also ${\gamma}-glutamylcysteine$ synthetase was not changed following the GE-132 treatment, but the activity of glutathione reductase was significantly increased. The level of hepatic glutathione which was decreased by bromobenzene recovered markedly by GE-132 pretreatment. It is concluded that the mechanism for the observed effect of GE-132 on bromobenzene metabolism is due to the induction of glutathione S-transferase.

  • PDF