• Title/Summary/Keyword: brittle failure

Search Result 589, Processing Time 0.028 seconds

Effect of Tension, Compression Lamination and Number of Lamination on the Flexural Properties of Platanus occidentalis L. Laminated Beam (인장(引張) 및 압축부재(壓縮部材)와 적층수(積層數)가 플라타너스 집성재(集成材)의 휨성질(性質)에 미치는 영향(影響))

  • Oh, Se-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.3-12
    • /
    • 1986
  • The aim of this study is to determine the flexural properties(Modulus of Rupture, Modulus of Elasticity) of Platanus occidentalis L. laminated beams fabricated with 1, 3, 5, 8, 15 lamination and Tension, Compression lamination. The results were as follows: 1. MOR increased with increasing number of lamination in 3, 5, 8, 15-beam and Tension lamination beam. MOR of Compression lamination beam was lower than that of 3-beam, MOR of vertical beam not having Tension or compression lamination was lower than that of horizontal beam, but MOR of vertical beam with tension or compression lamination was same or slightly higher than that of horizontal beam. 2. The allowable working stress showed the same tendency. This stress increased with increasing number of lamination. This value of Tension lamination beam was higher than that of compression lamination beam. 3. MOE of all laminated beams was higher than that of solid beam and Tension lamination beam was higher than that of 3-beam. MOE of Tension lamination beam was higher than that of Compression lamination beam. MOE of all vertical beam was higher than that of horizontal beam except for T-2, T-5, C-3. 4. Most beam failures appeared to begin in tension. These tension failures were classified into Splintering tension, Cross-grained tension, Simple tension, Brittle tension. All test beam failures could be classified into three categories. 1) Tension failure 2) Compression failure 3) Horizontal shear failure.

  • PDF

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

A Study on Failure Mechanisms of Composite Tubes with Woven Fabric Carbon, Glass and Kevlar/epoxy Under Compressive Loadings (직조된 탄소, 유리 및 케블라 섬유 복합소재 튜브의 압축하중하에서 파손 메커니즘 분석 연구)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Lee, Ho-Sun;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.590-596
    • /
    • 2009
  • In this study, the failure modes and energy absorption characteristics of four different kinds of circular tubes made of carbon, glass, Kevlar and carbon-Kevlar hybrid fibres composites with epoxy resin have been evaluated. To achieve these goals, compressive tests were conducted for the tubes under 10mm/min loading speed. Based on the test results, the carbon/epoxy tube showed the best energy absorption capability, while carbon-Kevlar/epoxy tubes were worst. In the failure mode during crushing, both of the carbon/epoxy tubes and the glass/epoxy tubes were crushed by brittle fracturing mode. The Kevlar/epoxy tubes were collapsed by local buckling mode like steel, while the carbon-Kevlar hybrid tubes were collapsed by mixed mode of local buckling and lamina bending.

Experimental and Numerical Analysis on Full High Strength Steel Extended Endplate Connections in Fire

  • Qiang, Xuhong;Wu, Nianduo;Jiang, Xu;Luo, Yongfeng;Bijlaard, Frans
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1350-1362
    • /
    • 2018
  • Full-scale experimental study and numerical analysis on behaviors and failure mechanisms of full high strength steel extended endplate connections in fire have been carried out and presented in this paper. The experimental behaviors of the connections were compared with the provisions of Eurocode 3. The test results show that the failure modes of the connections in fire are bolt failure with yielding of the flange, as same as those at ambient temperature. The failures of the bolts in fire are ductile while they are brittle at ambient temperature. The rotation capacity of the connections in fire is proved sufficient. What is more, at elevated temperature $550^{\circ}C$, the plastic moment resistances of Q690 and Q960 full high strength steel endplate connections are only 40% of those at ambient temperature, while their initial rotation stiffness are 66 and 63% respectively. But the rotation capacities of Q690 and Q960 high strength steel endplate connections are 1.38 and 1.74 times of those at ambient temperature. Moreover, it is found that the component method Eurocode 3 proposed based on connections made of mild steels can be used to calculate plastic resistances and to predict failure modes of high strength steel endplate connections in fire, but it is not suitable to predict their stiffness. The suggestions about rotation capacity of connections in Eurocode 3 are found too conservative for high strength steel endplate connections in fire.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

Seismic Retrofit of GFRP Wrapping on the Lap-spliced Bridge Piers (GFRP 래핑에 의한 겹침이음된 교각의 내진보강)

  • Youm, Kwang Soo;Kwon, Tae Gyu;Lee, Young Ho;Hwang, Yoon Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.311-318
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete circular columns with poor lap-splice details using GFRP wrapping. Five full-scale model columns have been tested. The prototype structure is an existing circular reinforced concrete bridge piers designed following the pre-seismic codes and constructed in South Korea in 1979. The as-built column will be expected to suffer brittle failure due to the bond failure of lap-spliced longitudinal reinforcement. The retrofitted columns using GFRP wrapping showed significant improvement of seismic performance. However, the predicted flexural failure mode was not achieved and the longitudinal bars were not yielded. Failure modes of the retrofitted columns are considered to be the gradually delayed bond slip in lap-spliced longitudinal reinforcement. Suggested retrofit design methods using GFRP were validated experimentally.

Punching performance of RC slab-column connections with inner steel truss

  • Shi, Qingxuan;Ma, Ge;Guo, Jiangran;Ma, Chenchen
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • As a brittle failure mode, punching-shear failure can be widely found in traditional RC slab-column connections, which may lead to the entire collapse of a flat plate structure. In this paper, a novel RC slab-column connection with inner steel truss was proposed to enhance the punching strength. In the proposed connection, steel trusses, each of which was composed of four steel angles and a series of steel strips, were pre-assembled at the periphery of the column capital and behaved as transverse reinforcements. With the aim of exploring the punching behavior of this novel RC slab-column connection, a static punching test was conducted on two full-scaled RC slab specimens, and the crack patterns, failure modes, load-deflection and load-strain responses were thoroughly analyzed to explore the contribution of the applied inner steel trusses to the overall punching behavior. The test results indicated that all the test specimens suffered the typical punching-shear failure, and the higher punching strength and initial stiffness could be found in the specimen with inner steel trusses. The numerical models of tested specimens were analyzed in ABAQUS. These models were verified by comparing the results of the tests with the results of the analyzes, and subsequently the sensitivity of the punching capacity to different parameters was studied. Based on the test results, a modified critical shear crack theory, which could take the contribution of the steel trusses into account, was put forward to predict the punching strength of this novel RC slab-column connection, and the calculated results agreed well with the test results.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.

Effect of Joint Reformation on Adhesive Strength of 6061 Aluminum Alloy to Polycarbonate Lap Structures

  • D. W. Seo;Kim, H. J.;J. K. Lim
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5mm/min. As a result, the load distribution showed a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

  • PDF