• 제목/요약/키워드: brine disposal

검색결과 5건 처리시간 0.029초

Waste Isolation Pilot Plant Performance Assessment: Radionuclide Release Sensitivity to Diminished Brine and Gas Flows to/from Transuranic Waste Disposal Areas

  • Day, Brad A.;Camphouse, R.C.;Zeitler, Todd R.
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.450-457
    • /
    • 2017
  • Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

Advanced Membrane Systems for Seawater Desalination. Kinetics of Salts Crystallization from RO Brines Promoted by Polymeric Membranes

  • Curcio, Efrem;Obaidani, Sulaiman Al;Macedonio, Francesca;Profio, Gianluca Di;Gualtieri, Silvia;Drioli, Enrico
    • 멤브레인
    • /
    • 제17권2호
    • /
    • pp.93-98
    • /
    • 2007
  • The reliability of innovative membrane contactors technology (i.e. Gas/Liquid Membrane Contactors, Membrane Distillation/Crystallization) is today increasing for seawater desalination processes, where traditional pressure-driven membrane separation units are routinely operated. Furthermore, conventional membrane operations can be integrated with membrane contactors in order to promote possible improvements in process efficiency, operational stability, environmental impact, water quality and cost. Seawater is the most abundant aqueous solution on the earth: the amount of dissolved salts covers about 3% of its composition, and six elements (Na, Mg, Ca, K, Cl, S) account for more than 90% of ionic species. Recent investigations on Membrane Distillation-Crystallization have shown the possibility to achieve significant overall water recovery factors, to limit the brine disposal problem, and to recover valuable salts (i.e. calcium sulphate, sodium chloride, magnesium sulphate) by combining this technology with conventional RO trains. In this work, the kinetics of $CaSO_4{\cdot}2H_2O,\;NaCl\;and\;MgSO_4{\cdot}7H_2O$ crystallization is experimentally investigated in order to improve the design of the membrane-based crystallization unit.

MD/RO 담수화 플랜트에서 발생한 농축수의 Ca 및 Mg 전처리를 위한 침전 처리 특성 (Characteristics of precipitation treatment for Ca and Mg pretreatment of brine generated from MD/RO desalination plant)

  • 심재호;박재철;임대환;박주양
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.329-338
    • /
    • 2017
  • The problem of disposal of brine due to increased MD/RO desalination plant has recently become a big social issue. The chlor-alkali process through electrolysis of brine has been studied as a method to overcome this problem. In order to increase the electrolysis efficiency, a pretreatment process for removal of hard substances must be preceded. In this study, we investigated the mechanism of removal of hardness through chemical precipitation. As a result, Ca was greatly influenced by addition of $Na_2CO_3$, and Mg was strongly influenced by pH. Also, the addition of NaOH and $Na_2CO_3$ enabled simultaneous removal of Ca and Mg, and showed a removal efficiency of 99.9% or more. Finally, the residual concentrations of Ca and Mg in the brine after the reaction were 0.14 and 0.13 mg/L, respectively. Saturation index was calculated using Visual MINTEQ 3.1, and solid phase analysis of the precipitate was performed by FE-SEM and PXRD analysis. It was confirmed that precipitate formed by the formation of calcite and brucite.

전기투석 공정에 의한 알칼리 회수: 총설 (Alkali Recovery by Electrodialysis Process: A Review)

  • 살센벡 아샐;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제33권3호
    • /
    • pp.87-93
    • /
    • 2023
  • 전기투석(ED)은 이온교환막을 통한 이온의 분리에서 중요한 과정이다. 해수담수화로 발생하는 염수 처리는 환경적으로 큰 문제이며 막분리 기술을 통한 재활용 효율이 높다. 마찬가지로 알칼리는 가죽, 전기도금, 염색, 제련 등과 같은 여러 화학 산업에서 생산된다. 폐기물의 고농도 알칼리는 부식성이 높고 화학적 산소 요구량(COD) 값이 높기 때문에 환경에 방출하기 전에 처리해야 합니다. 칼슘과 마그네슘의 농도는 염수의 거의 두 배이며 주요 환경 오염 물질인 이산화탄소의 흡착에 완벽한 후보입니다. 수산화나트륨은 양극성 막 전기투석 공정으로 쉽게 생산되는 금속 탄산화 공정에 필수적입니다. 역삼투압(RO), 나노여과(NF), 초여과(UF), ED 등 다양한 공정을 통해 회수가 가능하다. 본 검토에서는 알칼리 회수를 위한 이온교환막에 의한 ED 공정에 대해 논의한다.

질산성질소에 파과된 이온교환수지의 생물학적 직접 재생 (Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin)

  • 남윤우;배병욱
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.