• Title/Summary/Keyword: bridge vibration

Search Result 846, Processing Time 0.027 seconds

Experimental study on possible vortex shedding in a suspension bridge - Part II - Results when under typhoon Babs and York

  • Law, S.S.;Yang, Q.S.;Fang, Y.L.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.555-576
    • /
    • 2007
  • Statistical analysis on the measured responses of a suspension bridge deck (Law, et al. 2007) show that vibration response at the first torsional mode of the structure has a significant increase at and beyond the critical wind speed for vortex shedding as noted in the wind tunnel tests on a sectional model. This paper further analyzes the measured responses of the structure when under typhoon conditions for any possible vortex shedding events. Parameters related to the lifting force in such a possible event and the vibration amplitudes are estimated with a single-degree-of-freedom model of the system. The spatial correlation of vortex shedding along the bridge span is also investigated. Possible vortex shedding events are found at both the first torsional and second vertical modes with the root-mean-square amplitudes comparable to those predicted from wind tunnel tests. Small negative stiffness due to wind effects is observed in isolated events that last for a short duration, but the aerodynamic damping exhibits either positive or negative values when the vertical angle of wind incidence is beyond ${\pm}10^{\circ}$. Vibration of the bridge deck is highly correlated in the events at least in the middle one-third of the main span.

Flow-induced Vibration Analysis of Bridge Girder Section (교량 구조물의 유체유발 진동해석)

  • Park, Seong-Jong;Kwon, Hyuk-Jun;Lee, In;Han, Jae-Heung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.402-409
    • /
    • 2004
  • Numerical analysis of static and dynamic wind effects on civil engineering structures was performed. Long-span suspension bridges are flexible structures that are highly sensitive to the action of the wind. Aerodynamic effect often becomes a governing factor in the design process of bridges and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Buffeting caused by turbulence results in structural fatigue, which could lead to the failure of a bridge. Navier-Stokes equations are used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes.

The actuation equation of macro-fiber composite coupled plate and its active control over the vibration of plate and shell

  • Tu, Jianwei;Zhang, Jiarui;Zhu, Qianying;Liu, Fan;Luo, Wei
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.297-311
    • /
    • 2018
  • Plate and shell structure is widely applied in engineering, i.e. building roofs, aircraft wings, ship platforms, and satellite solar arrays. Its vibration problem has become increasingly prominent due to the tendency of lightening, upsizing and flexibility. As a new smart material with great actuating force and toughness, macro-fiber composite (MFC) is composed of piezoelectric fiber and epoxy resin basal body, which can be directly pasted onto the surface of plate and shell and is suitable for vibration control. This paper deduces the actuation equation of MFC coupled plate in different boundary conditions, an equivalent finite element modeling method is proposed which uses MFC actuating force as the applied excitation, and on this basis the active control simulation and experiment of MFC over plate and shell structure vibration are accomplished. The results indicate that MFC is able to implement effective control over plate and shell structure vibration in multi-band range. The comparison between experiment and simulation proves that the actuation equation deduced herein, effective and practicable, can be applied into the simulation calculation of MFC vibration control over plate and shell structure.

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.

Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Liu, Jiangyun;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1003-1021
    • /
    • 2015
  • MR dampers have been proposed for the control of cable vibration of cable-stayed bridge in recent years due to their high performance and low energy consumption. However, the highly nonlinear feature of MR dampers makes them difficult to be designed with efficient semi-active control algorithms. Simulation study has previously been carried out on the cable-MR damper system using a semi-active control algorithm derived based on the universal design curve of dampers and a bilinear mechanical model of the MR damper. This paper aims to verify the effectiveness of the MR damper for mitigating cable vibration through a full-scale experimental test, using the same semi-active control strategy as in the simulation study. A long stay cable fabricated for a real bridge was set-up with the MR damper installed. The cable was excited under both free and forced vibrations. Different test scenarios were considered where the MR damper was tuned as passive damper with minimum or maximum input current, or the input current of the damper was changed according to the proposed semi-active control algorithm. The effectiveness of the MR damper for controlling the cable vibration was assessed through computing the damping ratio of the cable for free vibration and the root mean square value of acceleration of the cable for forced vibration.

Impact factors of an old bridge under moving vehicular loads

  • Liu, Yang;Yin, Xinfeng;Zhang, Jianren;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.353-370
    • /
    • 2013
  • This paper presents a new method to study the impact factor of an old bridge based on the model updating technique. Using the genetic algorithm (GA) by minimizing an objective function of the residuals between the measured and predicted responses, the bridge and vehicle coupled vibration models were updated. Based on the displacement relationship and the interaction force relationship at the contact patches, the vehicle-bridge coupled system can be established by combining the equations of motion of both the bridge and vehicles. The simulated results show that the present method can simulate precisely the response of the tested bridge; compared with the other bridge codes, the impact factor specified by the bridge code of AASHTO (LRFD) is the most conservative one, and the value of Chinese highway bridge design code (CHBDC) is the lowest; for the large majority of old bridges whose road surface conditions have deteriorated, calculating the impact factor with the bridge codes cannot ensure the reliable results.

Vertical vibrations of a bridge based on the traffic-pavement-bridge coupled system

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.457-468
    • /
    • 2017
  • When studying the vibration of a suspension bridge based on the traffic-bridge coupled system, most researchers ignored the contribution of the pavement response. For example, the pavement was simplified as a rigid base and the deformation of pavement was ignored. However, the action of deck pavement on the vibration of vehicles or bridges should not be neglected. This study is mainly focused on establishing a new methodology fully considering the effects of bridge deck pavement, probabilistic traffic flows, and varied road roughness conditions. The bridge deck pavement was modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model; the typical traffic flows were simulated by the improved Cellular Automaton (CA) traffic flow model; and the traffic-pavement-bridge coupled equations were established by combining the equations of motion of the vehicles, pavement, and bridge using the displacement and interaction force relationship at the contact locations. The numerical studies show that the proposed method can more rationally simulate the effect of the pavement on the vibrations of bridge and vehicles.

Seismic Performance Evaluation of Railway Bridges Using Spherical Elastomeric Bearing (스페리컬 탄성받침을 이용한 철도교량의 내진성능평가)

  • Oh, Ju;Lee, Jae-Uk;Kim, Hu-Seung;Kim, Jae-Wook;Park, Seong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1236-1241
    • /
    • 2011
  • Railway bridge is the most problematic thing in the railway is due to noise and vibration. To solve these problems, there have been studies. However, a fundamental alternative to the noise and vibration. It has not so far not shown, and to minimize the problem is focused. As a result, developed a lot of noise reduction measures, but the vibration is not much for reduction. In this study, to support the superstructure of the bridge vibration possible for spherical elastomeric bearing is a technical review. And it applies to the railway bridge, the numerical analysis was carried out.

  • PDF

Study on the Vibration Control of Footbridge by Using Tuned Mass Damper(TMD) (Tuned Mass Damper(TMD)를 이용한 보도교의 진동제어에 대한 연구)

  • 권영록;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.9-15
    • /
    • 2003
  • This paper describes a vibration control by using tuned mass damper(i.e., TMD) for an existing footbridge. The footbridge is the simple steel box girder bridge with main span length of 47.7m. This bridge has light weight, low damping and the 1st bending frequency of 1.84㎐. Its frequency is close to a walking cycle, which is 2㎐. Therefore the uncomfortable resonant vibrations due to a pedestrian walking have occurred frequently. The vibration control by means of TMD for suppressing the pedestrian induced vibration was conducted. Taking into account economical benefits and the easiness of installation, a compact TMD installed within a handrail was designed. From field tests of the TMD, it was confirmed that the structural damping of the bridge via. the compact TMD was enhanced by 13 times and the resonant vibration due to pedestrian walking was suppressed.

Performance Evaluation of Vibration Control According to Installation Location of a Sky-bridge (스카이브릿지 설치위치에 따른 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Park, Yong-Koo;Ko, Hyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.65-74
    • /
    • 2010
  • In this study, the vibration control effect according to the installation location of the sky-bridge and the difference of natural periods of the connected buildings has been investigated. To this end, 40-story and 50-story building structures connected by a sky-bridge were used as example structures and the equivalent modeling method was used. Boundary nonlinear time history analyses were performed using El Centro and Taft earthquakes to investigate the dynamic behavior of the example structures and vibration control effect of the sky-bridge. Based on numerical results, it has been shown that displacement responses can be effectively controlled as the installation floor of the sky-bridge increases and acceleration responses can be effectively reduced when the sky-bridge is installed on the mid-stories of the example building.

  • PDF