• Title/Summary/Keyword: bridge pier

Search Result 487, Processing Time 0.031 seconds

Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test (유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력)

  • 박창규;박진영;조대연;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Seismic Response of CWR on HSR Bridge Considering Derailment Inducing Factors (탈선취약요소를 고려한 고속철도교량 장대레일 지진응답 평가)

  • Yi, Jang-Seok;Kim, Dae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.29-38
    • /
    • 2009
  • n the event of an earthquake, additional stresses can occur in the continuous welded rails (CWR) of High-speed railway (HSR) bridges due to relative displacements at expansion joints, and this stress can cause derailment. The amplification of ground motion occurs as a result of site effects, and this is pronounced at the site of a soft surface soil layer and of a rigid surface soil layer over a soft one. As a result, the amplified ground motion leads to an amplified seismic response in HSR bridges. A change in bridge pier height affects the seismic behavior of the bridge. A HSR bridge with gravel ballast tracks will show different dynamic behavior during an earthquake than one with concrete ballast tracks. The seismic responses of HSR bridges and their CWR are analyzed considering the derailment-inducing factors.

Parametric Analysis for Up-lifting force on Slab track of Bridge under Train Load (열차하중 재하시 교량상slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.279-282
    • /
    • 2008
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of the end rotation of the overhang due to the vertical load. When the up-lifting force exceeds the clamp force of the fastener clip, the rail pad is out of fastener, which makes decrease the serviceability of the railway, such as noise and vibration. Furthermore, it is possible to reduce the safety of the track as the longitudinal resistance. This study is focused on guideline suggestion to decrease up-lifting force in the fastener adjacent to the civil joint of slab track of bridge throughout the parametric analysis between the vertical spring stiffness of the fastener as the material approach, the space of fastener adjacent to bridge transition, the rigidity of the girder as the geometrical approach and up-lifting force under the train load.

  • PDF

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.

Arching Action Effect for Inelastic Seismic Responses of Bridge Structures (교량의 비탄성 지진응답에 대한 아칭작용의 영향)

  • Song, Jong-Keol;Nam, Wang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.131-143
    • /
    • 2009
  • Under transverse earthquake shaking, arching action of bridge structures develops along the deck between the abutments thus providing the so-called deck resistance. The magnitude of the arching action for bridge structures is dependent on the number of spans, connection condition between deck and abutment or piers, and stiffness ratio between superstructure and substructure. In order to investigate the arching action effects for inelastic seismic responses of PSC Box bridges, seismic responses evaluated by pushover analysis, capacity spectrum analysis and nonlinear time-history analysis are compared for 18 example bridge structures with two types of span numbers (short bridge, SB and long bridge, LB), three types of pier height arrangement (regular, semi-regular and irregular) and three types of connection condition between superstructure and substructure (Type A, B, C). The arching action effects (reducing inelastic displacement and increasing resistance capacity) for short bridge (SB) is more significant than those for long bridge (LB). Semi-regular and irregular bridge structures have more significant arching action than regular bridges.

A Study on Strengthening of Reinforced Concrete Pier Caps Using Prestressed Near Surface Mounted CFRP (프리스트레스가 도입된 표면매립 CFRP를 이용한 교각 두부 보강에 관한 연구)

  • Hong, Sung-Nam;Kim, Tae-Wan;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2007
  • Recently, concrete structures with carbon fiber reinforced polymer (CFRP) reinforcements have been commonly used for the bridge and building construction. In this paper, pier caps were strengthened by prestressed near surface mounted CFRP. To verify the effectiveness of the strengthening method, 7 pier cap specimens were fabricated. One specimen was designed for control, two for external prestressing steel strands, two for CFRP plates, and two for CFRP bars. Experimental variables consist of type of reinforcement materials and prestressing levels. The results of laboratory have shown that the ultimate load capacities of prestressed near surface mounted CFRP specimens were about $20{\sim}33%$ greater than that of a control specimen. Also, ultimate load capacities of prestressed near surface mounted CFRP specimens were similar to those of external prestressing specimens with steel strands.

A Study on Damage Process Analysis for Steel Pier Subjected to Seismic Excitation (강한 지진 하중하에서 강재 교각의 손상 거동 연구)

  • Park, Yeon Soo;Park, Keun Koo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.251-258
    • /
    • 2000
  • Based on the numerical investigations using steel bridge pier subjected to strong seismic excitations a new approach to seismic damage assessment for steel structures and their members has been proposed in conjunction with the suggested definition of failure state. The relevant failure form of the steel pier is evaluated. It is revealed that when a seismic load has a short period, the failure of global buckling beyond the allowable displacement is more dominant than that by that of the local buckling caused by the accumulation of plastic strain. When a seismic load is not beyond this certain part, but repeats within the range of where a plastic deformation occurs, the plastic strain is accumulated on the partial element of bottom edge of steel pier and the failure occurs by the local buckling from the accumulated plastic local strain.

  • PDF

Shake Table Response and Analysis of RC Bridge Piers with Lap-Spliced Steel under NFGM (주철근 겹침이음된 RC교각의 근단층지반운동에 대한 진동대 응답과 분석)

  • Chung, Young-Soo;Park, Chang-Young;Hong, Hyun-Ki;Park, Ji-Ho;Shim, Chang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 2008
  • The near-fault ground motion (NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Izmit Turkey (1999), Kobe Japan (1995), Northridge USA (1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the near-fault ground motion (NFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on reinforced concrete (RC) bridge piers with lap-spliced longitudinal reinforcing steels. The seismic performance of four RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, a RC bridge pier is subjected to pseudo-dynamic loadings. Test results showed that large residual displacements were observed in RC bridge piers under NFGM. RC specimens on the shake table failed at relatively low displacement ductility, compared with the displacement ductility of RC bridge pier subjected to pseudo-dynamic loadings.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.

Analysis and monitoring on jacking construction of continuous box girder bridge

  • Li, Fangyuan;Wu, Peifeng;Yan, Xinfei
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.49-65
    • /
    • 2015
  • It is hard to guarantee the strict synchronization of all the jacking-up points in the integral jacking of a large-span continuous box girder bridge. This paper took the Hengliaojing Bridge as background, which need jacking up as an object with 295m length and more than 10,000tons weight, adopted 3D software to calculate the unsynchronized jacking-up working conditions, and studied the relationships between the unsynchronized vertical difference and the girder's deformation behaviour. The aim is to verify the maximum value of the unsynchronized vertical difference, and guide the construction and ensure safety. The monitoring system with its contents is introduced corresponding to the analysis. The results of the deck relative elevations prove that it is difficult to avoid the deck torsional deformation for jacking different; especially the side span shows more deformations for its smaller stiffness. The maximum difference is smaller than the limited value with acceptable stresses in the sections. The jacking heights of the pier in each construction step are controlled regularly according to the design. The shifting of the whole bridge in longitudinal direction is smaller than in transverse direction. The several beginning steps are the key to adjust their support reactions. This study is one parts of the fundamental research for the code "Technical specification for bridge jacking-up and reposition of China". The whole synchronous jacking project of the main bridge set a world record by the World Record Association for the whole bridge jacking project with the longest span of the world.