• Title/Summary/Keyword: bridge monitoring system

Search Result 389, Processing Time 0.021 seconds

A Study on the Remote Monitoring and Control of Ship's Emergency Lighting System (선박 비상조명 원격 모니터링 제어)

  • Yang, Hyun-Suk;Kim, Kun-Woo;Lim, Hyun-Jung;Moon, Jung-Pil;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.207-210
    • /
    • 2005
  • This paper describes a design of several ship's emergency lighting system(SELS) that power factor is improved and power is controlled extensively, and techniques to control and monitor this system in remote distance by PC serial communication. The remote monitoring control system is composed of emergency power supply system (EPSS), half bridge(HB)inverter, fluorescent lamp(FL), microprocessor, multi communication interface. EPSS checks the voltage of the emergency backup battery in real time. In case that the voltage of 13[V] or less has been detected for 5[msec] or longer for 3 times in a row, charger circuit is connected for battery charging. Experimental works using proposed system confirm that speedy and stable power to be supplied when main power source cut-off, compared with conventional analog type, and input power up to 35.0[%] by adjusting of pulse frequency of the HB inverter.

  • PDF

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

Characteristics of bridge task in Korean coastal large trawler (우리나라 근해 대형트롤 어선의 선교업무 특성)

  • Kim, Min-Son;Shin, Hyeon-Ok;Lee, Ju-Hee;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • To suggest a standard concerning with the arrangement of bridge equipment, the authors conducted the video observations with 3CCD (charge coupled device) cameras installed on the ceil of the bridge for monitoring the working activities of two bridge teams (the skipper/mate1 and the skipper/mate2) in a Korean coastal large trawler(gross tonnage: 139) for five days from July 30th. 2010 and analyzed of the data. Work elements coded by the work activities were input on the sheet of work analysis by the time unit of 1 sec according to the time occurred. A single work element among the work activities for every 5 minutes was denoted as the number of occurrence. The frequency of equipment usage was limited only in the usage of the equipment. In the case of the navigation and the towing net two ranks were integrated and analyzed. On the other hand, in the case of the casting net and the hauling net, two processes were integrated to as one and then analyzed separately as two ranks. As the results, 15 elements of work was carried out between two bridge teams for the observation; lookout, radar, GPS plotter, fish finder, net monitor, fishing deck, RPM indicator, rudder angle indicator, compass card, for maneuver; steering, ship speed control, trawl winch operation and external communications, paper works and others. It was found that the work load of the skipper per 5 minutes accordance with the navigation, the casting net, the towing net and the hauling net are 20.5 times, 11.9 times, 38.0 times and 9.5 times respectively, the mates are 65.2 times, 66.5 times, 85.7 times and 59.1 times respectively. The radar was shown the highest frequency of the equipment usage and the next was the fish finder, the GPS plotter and the external communications in the case of the navigation. In the case of the towing net the frequency of usage was high the ranking as the radar, the net monitor, the fish finder, the GPS plotter, the steering system and the external communications. In the case of the integrated process both of the casting and hauling net the trawl winch was shown the highest frequency to the skipper and the next was the GPS plotter and the radar, and the steering system was shown the highest frequency to the mate and the next was the radar, the ship speed control system, the GPS plotter, the net monitor and the fish finder.

The Efficient Method for Video Data Streaming via NMEA-0183 (NMEA-0183 기반 영상데이터의 효율적인 스트리밍 기법)

  • Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1300-1305
    • /
    • 2020
  • Due to the simplicity of communication structure using RS-232 and RS-422, the majority ships have still adapted on these communication interfaces and have constructed their own communication network in the ship. NMEA-0183 is the one of standards for BNWAS(Bridge Navigational Watch Alarm System) and currently being used in many countries. BNWAS utilises diverse sensor devices, GPS, AIS and so on for monitoring the status of ships and their deployments and environmental information(temperature, humidity, wind speed/direction, water temperature/current etc…). This paper proposes the use of any image sensors in NMEA-0183 environment and verifies possibility with certain video qualities through the experiment results. Furthermore the paper gathers videos and monitors the change of their qualities depending on the number of NMEA messages on RS-232 communication link. Finally we make conclusion that our proposal is sufficiently appropriate for ship monitoring system in the NMEA-0183.

Network vision of disaster prevention management for seashore reclaimed u-City (해안매립 신도시의 재해 예방관리 네트워크 비젼)

  • Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.117-129
    • /
    • 2009
  • This paper studied the safety management network system of infrastructure which constructed smart sensors, closed-circuit television(CCTV) and monitoring system. This safety management of infrastructure applied to bridge, cut slop and tunnel, embankment etc. The system applied to technologies of standardization guidelines, data acquirement technologies, data analysis and judgment technologies, system integration setup technology, and IT technologies. It was constructed safety management network system of various infrastructure to improve efficient management and operation for many infrastructure. Integrated safety management network system of infrastructure consisted of the real-time structural health monitoring system of each infrastructure, integrated control center, measured data transmission using i of tet web-based, collecting data using sf ver, early alarm system which the dangerous event of infrastructure occurred. Integrated control center consisted of conference room, control room to manage and analysis the data, server room to present the measured data and to collect the raw data. Early alarm system proposed realization of warning and response within 5 minute or less through development of sensor-based progress report and propagation automation system using the media such as MMS, VMS, EMS, FMS, SMS and web services of report and propagation. Based on this, the most effective u-Infrastructure Safety Management System is expected to be stably established at a less cost, thus making people's life more comfortable. Information obtained from such systems could be useful for maintenance or structural safety evaluation of existing structures, rapid evaluation of conditions of damaged structures after an earthquake, estimation of residual life of structures, repair and retrofitting of structures, maintenance, management or rehabilitation of historical structures.

  • PDF

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Prediction of Energy Production of China Donghai Bridge Wind Farm Using MERRA Reanalysis Data (MERRA 재해석 데이터를 이용한 중국 동하이대교 풍력단지 에너지발전량 예측)

  • Gao, Yue;Kim, Byoung-su;Lee, Joong-Hyeok;Paek, Insu;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • The MERRA reanalysis data provided online by NASA was applied to predict the monthly energy productions of Donghai Bridge Offshore wind farms in China. WindPRO and WindSim that are commercial software for wind farm design and energy prediction were used. For topography and roughness map, the contour line data from SRTM combined with roughness information were made and used. Predictions were made for 11 months from July, 2010 to May, 2011, and the results were compared with the actual electricity energy production presented in the CDM(Clean Development Mechanism)monitoring report of the wind farm. The results from the prediction programs were close to the actual electricity energy productions and the errors were within 4%.

Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements

  • Park, Jae-Hyung;Kim, Jeong-Tae;Hong, Dong-Soo;Mascarenas, David;Lynch, Jerome Peter
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.711-730
    • /
    • 2010
  • This study presents the design of autonomous smart sensor nodes for damage monitoring of tendons and girders in prestressed concrete (PSC) bridges. To achieve the objective, the following approaches are implemented. Firstly, acceleration-based and impedance-based smart sensor nodes are designed for global and local structural health monitoring (SHM). Secondly, global and local SHM methods which are suitable for damage monitoring of tendons and girders in PSC bridges are selected to alarm damage occurrence, to locate damage and to estimate severity of damage. Thirdly, an autonomous SHM scheme is designed for PSC bridges by implementing the selected SHM methods. Operation logics of the SHM methods are programmed based on the concept of the decentralized sensor network. Finally, the performance of the proposed system is experimentally evaluated for a lab-scaled PSC girder model for which a set of damage scenarios are experimentally monitored by the developed smart sensor nodes.

Drift error compensation for vision-based bridge deflection monitoring

  • Tian, Long;Zhang, Xiaohong;Pan, Bing
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.649-657
    • /
    • 2019
  • Recently, an advanced video deflectometer based on the principle of off-axis digital image correlation was presented and advocated for remote and real-time deflection monitoring of large engineering structures. In engineering practice, measurement accuracy is one of the most important technical indicators of the video deflectometer. However, it has been observed in many outdoor experiments that data drift often presents in the measured deflection-time curves, which is caused by the instability of imaging system and the unavoidable influences of ambient interferences (e.g., ambient light changes, ambient temperature variations as well as ambient vibrations) in non-laboratory conditions. The non-ideal unstable imaging conditions seriously deteriorate the measurement accuracy of the video deflectometer. In this work, to perform high-accuracy deflection monitoring, potential sources for the drift error are analyzed, and a drift error model is established by considering these error sources. Based on this model, a simple, easy-to-implement yet effective reference point compensation method is proposed for real-time removal of the drift error in measured deflections. The practicality and effectiveness of the proposed method are demonstrated by in-situ deflection monitoring of railway and highway bridges.

Real Time Alarm System of Enormous Structure Using RTK GPS (RTK GPS를 이용한 대형구조물의 실시간 경보 시스템)

  • 박운용;송연경;이현우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2004
  • Such social structures as bridges,, buildings, dams and towers have been transformed by their own load or fundamental ground. They have been behaved by other external causes. These regular or irregular behaviors threaten to do their users safety. Therefore, to monitor the load of the structures or reaction shown by them could help to verify their behaviors. RTK GPS allows the use of a static base station and remote rover unit to allow f3r data collection within several seconds and in real time. It is useful for monitoring the behaviors of massive structures like bridges. In this Study, Among GPS methods, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when measured the behavior of main tower of a suspension bridge by using RTK GPS. Comparing a deviation between observation values, X axis was Imm, Y axis was 1mm and Z axis 2.2mm. It turned out that it was possible to monitor and measure structures by RTK GPS.