• Title/Summary/Keyword: bridge girder

Search Result 1,301, Processing Time 0.025 seconds

Behavior of Composite Steel Bridges According to the Concrete Slab Casting Sequences (바닥판 콘크리트 타설순서에 따른 합성형교량의 거동해석)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.233-251
    • /
    • 1998
  • This paper deals with the prediction of behavior of composite girder bridges according to the placing sequences of concrete deck. Based on a degenerate kernel of compliance function in the form of Dirichlet series, the time-dependent behaviors of bridges are simulated, and the layer approach is adopted to determine the equilibrium condition in a section. The variation of bending moments along the bridge length caused by the slab casting sequence is reviewed and correlation studies between section types and placing sequences are conducted with the objective to establish the validity of the continuous placing of concrete deck on the closed steel box-girder which is broadly used in practice.

  • PDF

The anti-corrosion study on the corrosion-sensitive areas of unpainted weathering steel bridges with closed box girder(I) (밀폐 박스거더형 무도장 내후성강 교량의 부식취약부에 대한 방식대책 연구(I))

  • Song, Chang-young;Lee, Eui-Ho;Lee, Jea-Hyun;Park, Hyun-Chul;Choi, Jae-Suk;Noh, Young-Tae
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.149-157
    • /
    • 2013
  • In corrosion-sensitive areas of exsisting unpainted weathering steel bridges with closed box girder structures. there are some serious local corrosion problems because of rain water or dew water which can not be solved by exsisting maintenance methods. These problems must be controled technically because of bad. influence on the safety of bridge. This study is the first stage of developing the economic corrosion control manual for these local corrosion problems. Through the injection of tar sealant into the crevice of mock-up equipment, it was prooved that the corrosive sealant can be useful to corrosion control at crevice of corrosion sensitive area.

Plastic load bearing capacity of multispan composite highway bridges with longitudinally stiffened webs

  • Unterweger, Harald;Lechner, Andreas;Greiner, Richard
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.1-19
    • /
    • 2011
  • The introduction of the Eurocodes makes plastic design criteria available also for composite bridges, leading to more economical solutions compared with previous elastic design rules. Particularly for refurbishment old bridges with higher actual traffic loads, up to date outside the scope of the Eurocodes, strengthening should therefore be avoidable or at least be necessary only to a minor extent. For bridges with smaller spans and compact cross sections, the plastic load bearing capacity is clearly justified. In this work, however, the focus is placed on long span continuous composite bridges with deep, longitudinally stiffened girders, susceptible to local buckling. In a first step, the elastic - plastic cross section capacity of the main girder in bending is studied as an isolated case, based on high preloads acting on the steel girder only, due to the common assembling procedure without scaffolding. In a second step, the effects on the whole structure are studied, because utilising the plastic section capacity at midspan leads to a redistribution of internal forces to the supports. Based on the comprehensive study of an old, actual strengthened composite bridge, some limitations for plastic design are identified. Moreover, fully plastic design will sometimes need additional global analysis. Practical recommendations are given for design purposes.

Stress checklist of box girder structure based on spatial grid analysis method

  • Ni, Ying-sheng;Li, Ming;Xu, Dong
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.407-416
    • /
    • 2021
  • The checking stresses in the Chinese codes for reinforced concrete (RC) or prestressed concrete (PC) bridges are aimed for the thin-web beam, which cannot reflect the actual behavior of the modern structures. The incompleteness of the checking stresses could give rise to the deficiency in the design and calculation, and unable to reveal the reason of some common cracks in the structure. In this paper, the complete stress checklist for RC or PC girder bridges are listed, as well as the corresponding crack shapes. The expression of the complete checking stresses is proposed in details. Spatial Grid Model can reflect all the concerned stresses in the structure. Through the comparison of the calculation results from the spatial grid model and the solid model, it is seen that the spatial grid model can reflect load effects such as shear lag effect, thin-wall effect and local effect. The stresses obtained from the spatial grid model could help engineers to have a good understanding of the structural behavior. Meanwhile, the stress checklist provides the information for analyzing and solving the deficiency in the structure.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

INTEGRATION MODEL OF COST AND SCHEDULE IN STEEL BOX GIRDER BRIDGE PRODUCTION PROCESS

  • Seok Kim;Kyoungmin Kim;Seung-Ho Ha ;Kyong Ju Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1262-1267
    • /
    • 2005
  • It is still difficult to share and utilize the information generated at each phase of a steel box girder production process due to the spatial gap and different level of management information. The physical distance results in the inefficiency of the information transmission, the accidental omission and typos of the relative information, and so on. Various levels of management information make it difficult to embody a new management system. Eventually, these factors incur the loss of cost and schedule and interrupt development of a new management system. This paper analyzes a current process and presents graphical process flow by using IDEF0. Based this analysis, the research for new production process and work breakdown structure (WBS) is conducted. At the end of this paper, the conceptual design of this system is suggested. Through new management system, it is expected that the model proposed in this study will improve the management process in the steel box production, and the improved process will reduce the redundant cost and schedule information, transmission and deposit generated by manual paper.

  • PDF

Simplified Load Distribution Factor Equation for the Design of Composite Steel Girder Bridges (강합성교 설계를 위한 하중분배계수 간략식)

  • Chung, Wonseok
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.131-138
    • /
    • 2005
  • The AASHTO wheel load distribution factor (LDF) equation has been with us since 1931 and has undergone minor modifications. In 1994, an entirely new procedure was introduced in the AASHTO LRFD code based on parametric studies and finite element analyses. However, this LDF equation involves a longitudinal stiffness parameter, the design of which is not initially known. Thus, an iterative procedure is required to correctly determine the LDF value. The increased level of complexity puts undue burden on the designer resulting in a higher likelihood for misinterpretation and error. In this study, based on current AASHTO LRFD framework, a new simplified equation is developed that does not require an iterative procedure. A total of 43 representative composite steel girder bridges are selected and analyzed using a finite element model.The new simplified equation produces LDF values that are always conservative when compared to those obtained from the finite element analyses and are generally greater than the LDF obtained using AASHTO LRFD specification. Therefore, the proposed simplified equation is expected to streamline the determination of LDF for bridge design without sacrificing safety.

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Design of longitudinal prestress of precast decks in twin-girder continuous composite bridges (2거더 연속강합성 교량의 프리캐스트 바닥판 종방향 프리스트레스 설계)

  • Shim, Chang Su;Kim, Hyun Ho;Ha, Tae Yul;Jeon, Seung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.633-642
    • /
    • 2006
  • Serviceability design is required to control the cracking at the joint of precast decks with longitudinal prestress in continuous composite bridges. Details of twin-girder bridges are especially complex not only due to their main reinforcements and transverse prestresses for the design of long-span concrete slabs, but also due to the shear pockets for obtaining the composite action. This paper suggests the design guidelines for the magnitude of the effective prestress and for the selection of filling materials and their requirements that would allow for the use of precast decks for twin-girder continuous composite bridges. The necessary initial prestress was also evaluated through long-term behavior analysis. From the analysis, existing design examples were revised and their effectiveness was estimated. When a filling material with a bonding strength higher than the requirement is used in the region of a high negative moment, a uniform configuration of the longitudinal prestressing steels along thewhole span length of continuous composite bridges can be achieved, which would result in the simplification of the details and the reduction of the construction costs.

Effect of Geometric Shapes on Stability of Steel Cable-stayed Bridges (기하형상에 따른 강사장교의 안정성에 관한 연구)

  • Kim, Seung-Jun;Han, Seung-Ryong;Kim, Jong-Min;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.13-27
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the beam-column effect of the girder and mast, and the large displacement effect. In this analytic research, a nonlinear frame element and a nonlinear equivalent truss element were used to model the girder, mast, and cable member. The live-load cases that were considered in this research were assumed based on the traffic loads. To perform reasonable analytic research, initial shape analyses in the dead-load case were performed before live-load analysis. In this study, the geometric nonlinear responses of the cable-stayed bridges with different cable arrangement types were compared. After that, parametric studies on the characteristics of the structural stability in critical live-load cases were performed considering various geometric parameters, such as the cable arrangement type, the stiffness ratios of the girder and mast, the area of the cables, and the number of cables. Through this parametric study, the effect of geometric shapes on the structural stability of cable-stayed bridges was investigated.