• 제목/요약/키워드: bridge cross section

검색결과 209건 처리시간 0.025초

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

고주파 지진에 의한 곡선 교량의 지진 취약도 분석 (Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes)

  • 전준태;주부석;손호영
    • 한국재난정보학회 논문집
    • /
    • 제16권4호
    • /
    • pp.806-812
    • /
    • 2020
  • 연구목적: I-Shape 거더를 갖는 곡선교량의 지진 안전성에 미치는 고주파 지진의 영향성을 분석하기 위해 지진 취약도 평가를 수행하였다. 연구방법: I-Shape 단면을 갖는 곡선교량의 선형탄성 유한요소 모델을 구축하고 고주파 영역의 인공지진파를 12개 생성하여 시간이력해석 및 지진 취약도 평가를 수행하였다. 연구결과:변위응답(LS1, LS2)에 대한 한계상태는 0.1g를 넘어서면서 파괴가 발생하였으며 거더의 응력응답 한계상태의 경우 0.2g를 넘어서면서 정해진 한계상태를 초과하는 것으로 나타났다. 결론: 현재 구축된 곡선교량 모델의 경우 고주파 지진에 민감하게 반응하는 것으로 판단된다.

일면지지식 Extradosed교의 계획 및 설계 (Plan IE Design Of Extradosed Bridge Supported by Single Plane Cables)

  • 이종대;이두화;권소진;김종수;손준상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.615-620
    • /
    • 2001
  • The aim of this paper is to open up a relatively new type in bridge engineering by introducing plan and design of extradosed bridge which is implemented in Sungnam-Janghowon T/K project. The topic encompasses parametric study including the behavior of the bridge relevant to the cable layout, the distance from pier table to the first cable's location, the height of pylon, the stiffness of cross section and wind vibration to ascertain sectional type of bridge and span length. For the purpose of the knowledge base presented here, the important feature of design is recommended such as modeling method, camber control, finite element analysis and heat hydration of pier table. We can verify the issue related to the characteristics of extradosed bridge as a result of study and design endeavor.

  • PDF

전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정 (Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics)

  • 홍영길
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

I형 거더교의 동력분산형 하중에 대한 동적해석 (Dynamic Analysis of I-Type Girder Bridge with HEMU Train Load)

  • 이태규;김혜욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1279-1286
    • /
    • 2010
  • This paper deals with the influence on the dynamic response of I-type girder railway bridge with high-speed electric multiple unit(HEMU) train load. This bridge system which has six I-girder and several cross beams, is modeled with plate and frame elements. And the upper slab is assumed to be fully connected with girders using rigid rinks. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional section of bridge models was produced by the assumed design wheel loads of HEMU vehicle at 200~350 km/hr speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 30 and 35 m span length were investigated and compared with the limit values specified in various national railway bridge specifications.

  • PDF

장대레일 축력을 고려한 고속철도 특수교량의 변수별 분석 (Parameter Study for Long-Span Bridge of High-Speed Railway considering CWR Axial Force)

  • 이종순;조수익;박만호;주환중;남형모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1452-1459
    • /
    • 2010
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, that can be less constraints of construction depending on whether the application of rail expansion joint(REJ), which has disadvantaged in terms of maintenance. In this study, it was performed parameter study for multiple variables (shaft length, the upper and lower cross-section characteristics, track characteristics, etc.) in terms of CWR aspects. Structure-rail interaction analysis was applied to the typical simple span PSC Box and 3 span continuous bridge Extradosed Bridge(50m+80m+50m) excluding REJ. If you set the boundary e of variables for long-span railway bridge excluding REJ through the this study, when designing future is expected to be able to useful.

  • PDF

PSC철도교량 격벽부의 3차원 거동 및 스트럿-타이 모델 해석 (3-D Behavior and Strut-and-Tie Model Analysis of Diaphragm in PSC Train Bridge)

  • 송하원;변근주;김형운;김영훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.564-571
    • /
    • 1998
  • The function of diaphragms at abutments and piers of prestressed concrete (PSC) box girder train bridge is to transfer forces from the superstructure onto bearings or column and to stiffen the superstructure cross-section against in-plane deformation. Due to large stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than designs for other structual members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from behavior of the deck slab obtained from two dimensional analysis of the bridge, which is basis far the design of deck slab. In this paper, three dimensional behavior of deck slab near diaphragm of PSC box girder train bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling. Then, strut-and-tie model is applied to design the diaphragm of PSC box girder train bridge. The modeling techniques in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

군용 중차량의 도로교 통과 타당성에 관한 연구 (Feasibility Study on the Road Bridge Passed by Military Heavy Vehicle)

  • 박병희;송재호;장일영
    • 한국방재학회 논문집
    • /
    • 제6권2호
    • /
    • pp.37-44
    • /
    • 2006
  • 기존의 SOC를 보다 효율적으로 활용할 수 있는가를 고민하는 것은 SOC의 증설을 위한 연구.개발.투자만큼이나 중요한 문제이다. 또한 총중량 51톤의 군용 중차량인 전차가 현행법상 국내 교량의 통행에 제한을 받고 있다는 현실적인 문제에서 출발하여, 국내 외의 여러 연구 결과를 바탕으로 축하중 10톤, 총중량 40톤의 현 도로법상 차량의 운행제한 조항을 궤도하중인 군용전차에 일괄 적용하기에는 무리가 있다. 미국 및 NATO에서 사용하고 있는 교량해석방법의 또 다른 표준인 표준급수분류제도 등을 이용하여 우리 실정에 맞게 검증하고, 우리의 단위체계나 교량해석방법과는 다른 산물로서의 데이터베이스로 손쉽게 활용할 수 있어야 하겠다.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.