• Title/Summary/Keyword: bridge configuration

Search Result 230, Processing Time 0.021 seconds

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

DC-DC Converter of Fixed Duty Ratio Method for 1kW Photovoltaic System (1kW급 태양광 발전용 고정 시비율 방식의 DC-DC 컨버터)

  • Yoo, Ho-Won;Jung, Yong-Min;Lim, Seung-Beom;Lee, Jun-Young;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.46-48
    • /
    • 2008
  • A concern about micro grid connection system is elevated. The reason is that carbon dioxide emission is regionally restricted to prevent the drain of fossil fuel, high oil prices and global warming. The existing photovoltaic DC-DC converter is operated by the full-bridge method. However, the configuration is complicated because a phase shift method is required to raise an efficiency. A photovoltaic DC-DC converter connected with second layered half-bridge converter and boost converter is proposed in this paper. This proposed DC-DC converter is easy to control and has an advantage of reducing the size. Finally, the validity of the proposed converter is verified by the experimentation.

  • PDF

Novel Buck Mode Three-Level Direct AC Converter with a High Frequency Link

  • Li, Lei;Guan, Yue;Gong, Kunshan;Li, Guangqiang;Guo, Jian
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.407-417
    • /
    • 2018
  • A novel family of Buck mode three-level direct ac converters with a high frequency link is proposed. These converters can transfer an unsteady high ac voltage with distortion into a regulated sinusoidal voltage with a low THD at the same frequency. The circuit configuration is constituted of a three-level converter, high frequency transformer, cycloconverter, as well as input and output filters. The topological family includes forward, push-pull, half-bridge, and full-bridge modes. In order to achieve a reliable three-level ac-ac conversion, and to overcome the surge voltage and surge current of the cycloconverter, a phase-shifted control strategy is introduced in this paper. A prototype is presented with experimental results to demonstrate that the proposed converters have five advantages including high frequency electrical isolation, lower voltage stress of the power switches, bi-directional power flow, low THD of the output voltage, and a higher input power factor.

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model

  • Tu, Xi;Li, Zhengliang;Chen, Airong;Pan, Zichao
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.471-484
    • /
    • 2018
  • Refined analysis depicting mass transportation and physicochemical reaction and reasonable computing load with acceptable DOFs are the two major challenges of numerical simulation for concrete durability. Mesoscopic numerical simulation for chloride diffusion considering binder, aggregate and interfacial transition zone is unable to be expended to the full structure due to huge number of DOFs. In this paper, a multiscale approach of combining both mesoscopic model including full-graded aggregate and equivalent macroscopic model was introduced. An equivalent conversion of chloride content at the Interfacial Transition Layer (ITL) connecting both models was considered. Feasibility and relative error were discussed by analytical deduction and numerical simulation. Case study clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Difference for single-scale simulation and multiscale approach was observed. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of rebar placement, rebar diameter, concrete cover and exposure period.

Multi-interface Wireless Mesh Network Testbed using Wireless Distribution System (무선 분산 시스템을 이용한 멀티 인터페이스 무선 메쉬 네트워크 테스트베드)

  • Yoon, Mi-Kyung;Yang, Seung-Chur;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1077-1082
    • /
    • 2009
  • Wireless Mesh Network(WMN) is wireless backbone networks technique which has ease of network configuration and cost of advantage. Recently, WNM released a new product, but most of existing research and technology analysis the performance through the simulation. This paper build the wireless mesh network testbed for actual situation. Testbed supports multi-channel multi-interface using bridge, the Wireless Distribution System and dynamic location-based routing protocol. This routing protocol strongly design against wireless interference using metric for link channel change and real distance. Then, the address of mesh clients assigned by the centralized address management server. Mesh clients is designed and implemented to manage network through Simple Network Management Protocol.

Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torches

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.591-598
    • /
    • 2011
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torches. A series resonant half-bridge topology is presented as a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. A plasma torch rated at 3MW, 2kA and having a physical size of 1m is selected to be the high enthalpy source for a waste disposal system. The steady-state and transient operations of a plasma torch are simulated. The parameters of a Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. The circuit simulation waveform shows that the ripple of the arc current can be maintained within ${\pm}10%$ of its rated value under the presence of a load disturbance. This power conversion configuration provides a high enough ignition voltage, around 5KA, during the ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

Multilevel Inverter using Two 5-level Inverters Connected in Series (두 대의 5-레벨 인버터의 직렬결합을 이용한 멀티레벨인버터)

  • Choi, Won-Kyun;Kwon, Cheol-Soon;Hong, Un-Taek;Kang, Feel-Soon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.376-380
    • /
    • 2010
  • This paper presents a circuit configuration of multilevel inverter to increase the number of output voltage levels by using conventional 5-level inverters connected in series. Most of all it can maximize the number of output voltage levels by employing input voltage sources, which have the power of five. When it synthesizes the same number of output voltage levels, the proposed inverter can save the number of switching devices compared with the conventional cascaded H-bridge cell inverter. So it can reduce the size, cost, power consumption of the system. We implemented computer-aided simulation and experiments for a 25-level inverter employing two 5-level inverters.

A novel PFC AC/DC converter for reducing conduction losses (도통손실 저감형 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Choi, Cheul;Park, Sung-Jun;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2000
  • This paper presents a novel power factor corrected(PFC) single-stage AC/DC half-bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel powder factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V]output voltage are presented.

  • PDF

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Cascaded H-Bridge STATCOM (STATCOM에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • The static synchronous compensator (STATCOM) of cascaded H-bridge configuration accompanying multiple separate DC sides is inherently subject to the problem of uneven DC voltages. These DC voltages in one leg can be controlled by adjusting the AC-side output voltage of each cell inverter, which is proportional to the active power. However, when the phase current is extremely small, large AC-side voltage is required to generate the active power to balance the cell voltages. In this study, an alternative zero-sequence current injection method is proposed, which facilitates effective cell balancing controllers at no load, and has no effect on the power grid because the injected zero sequence current only flows within the STATCOM delta circuit. The performance of the proposed method is verified through simulation and experiments.