• Title/Summary/Keyword: bridge configuration

Search Result 230, Processing Time 0.027 seconds

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

Reliability-Based Managing Criteria for Cable Tension Force in Cable-stayed Bridges (신뢰성에 기초한 사장교 케이블 장력 관리기준치 설정)

  • Cho, Hyo-Nam;Kang, Kyung-Koo;Cha, Cheol-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.129-138
    • /
    • 2005
  • This paper presents a methodology for the determination of optimal managing criteria for cable tension force in cable-stayed bridges using acceleration data acquired by monitoring system. There are many long span bridges installed with monitoring system in Korea. The monitoring systems are installed to diagnose abnormal behavior or damages in bridges and to warn these to bridge management agency. In cable-stayed bridges, the cable tension force could be an important indicator of abnormal behavior because of the geometric configuration of the cable-stayed bridge. If the management value of cable tension force is set too high or too low, then the monitoring system could not warn properly for the abnormal behavior of a bridge. Generally, the management value is set by empirical or engineering judgment, but in this paper, a new methodology for the determination of managing criteria for cable tension force is proposed based on the probability distribution model for tension force and reliability analysis. The proposed methodology is applied to a real concrete cable-stayed bridge in order to investigate its applicability.

Half and Full-Bridge Cell based Stand-Alone Photovoltaic Multi-Level Inverter (하프ㆍ풀-브리지 셀을 이용한 독립형 태양광 멀티레벨 인버터)

  • Kang Feel-Soon;Oh Seok-Kyu;Park Sung-Jun;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.438-447
    • /
    • 2004
  • A new multilevel PWM inverter using a half-bridge and full-bridge cells is proposed for the use of stand-alone photovoltaic inverters. The configuration of the proposed multilevel PWM inverter is based on a prior 11-level shaped PWM inverter. Among three full-bridge cells employed in the prior inverter, one cell is substituted by a half-bridge cell. Owing to this simple alteration, the proposed inverter has three promising merits. First it increases the number of output voltage levels resulted in high quality output voltages. Second, it reduces two power switching devices by means of employing a half-bridge cell. Third, it reduces power imposed on a transformer connected with the half-bridge unit. That is to say, most power is transferred to loads via cascaded transformers connected with low switching inverters, which are used to synthesize the fundamental output voltage levels whereas the output of a transformer linked to a high switching inverter is used to improve the final output voltage waves; thus, it is desirable in the point of the improvement of the system efficiency. By comparing to the prior 11-level PWM inverter, it assesses the performance of the proposed inverter as a stand-alone photovoltaic inverter. The validity of the proposed inverter is verified by computer-aided simulations and experimental results.

Design and Implementation of a New Multilevel DC-Link Three-phase Inverter

  • Masaoud, Ammar;Ping, Hew Wooi;Mekhilef, Saad;Taallah, Ayoub;Belkamel, Hamza
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.292-301
    • /
    • 2014
  • This paper presents a new configuration for a three-phase multilevel voltage source inverter. The main bridge is built from a classical three-phase two-level inverter and three bidirectional switches. A variable DC-link employing two unequal DC voltage supplies and four switches is connected to the main circuit in such a way that the proposed inverter produces four levels in the output voltage waveform. In order to obtain the desired switching gate signals, the fundamental frequency staircase modulation technique is successfully implemented. Furthermore, the proposed structure is extended and compared with other types of multilevel inverter topologies. The comparison shows that the proposed inverter requires a smaller number of power components. For a given number of voltage steps N, the proposed inverter requires N/2 DC voltage supplies and N+12 switches connected with N+7 gate driver circuits, while diode clamped or flying capacitor inverters require N-1 DC voltage supplies and 6(N-1) switches connected with 6(N-1) gate driver circuits. A prototype of the introduced configuration has been manufactured and the obtained simulation and experimental results ensure the feasibility of the proposed topology and the validity of the implemented modulation technique.

A Performance of Single Phase Switched Reluctance Motor having both Radial and Axial air gap

  • 임준영;정윤철;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.184-188
    • /
    • 1999
  • Switched Reluctance Motor has doubly salient poles in stator and rotor, windings are wound in just stator and no magnet or windings on the rotor. This configuration is robust mechanically and thermally. The inverter of SRM is more robust than that of induction or brushless DC(BLDC) motor, but still its drive is comparatively expensive for home appliance. To drive the conventional three or four-phase SRM, 6 to 8 power switches are required when asymmetric bridge inverter is employed. Generally, more than 50% of the cost for the SRM drive is allocated to power devices and gate drives. This paper proposed single phase SRM that have both radial and axial air gaps. The stator and rotor were stacked with two types of stampings that have different diameters. This configuration is very effective to increase align inductance(Lmax). The high value of Lmax increases the motor efficiency and power density. The proposed single phase SRM(Claw SRM) can be driven by only two power switches. To show the validity of the proposed idea, the analysis using finite element method(FEM) and experimental works are carried out. The proposed SPSRM can be driven with high efficiency and can be made compactly and inexpensively because of high value of align inductance and less number of switches. For the comparison, we used same stator for three-phase and single phase, and slightly different stator and rotor for proposed single phase SRM(Claw SRM)

  • PDF

Use of Solar Cell and Nanofiltration Membrane for System of Enzymatic $H_2$ Production Through Light-Sensitized Photoanode (광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • Solar cell and nanofiltration membrane were utilized in a system of enzymatic hydrogen production through light-sensitized photoanode, which resembles photoelectrochemical(PEC) configuration. Solar cell uses no additional light energy to increase energy for electrons to reduce protons and for holes to oxidize water to oxygen, and nanofiltration membrane replaces a salt bridge successfully with increased ion transport capability. With this system configuration, optimized amount of enzyme(10.98 unit), and an anodized tubular $TiO_2$ electrode($5^{\circ}C$/1 hr in 0.5 wt% HF-$650^{\circ}C$/5 hr) hydrogen evolved at a rate of ca. $43\;{\mu}mol/(cm^2{\times}hr)$ in a cathodic compartment and oxygen generated at a rate of ca. $20\;{\mu}mol/(cm^2{\times}hr)$ in an anodic compartment. The stoichiometric evolution of gases indicated that water was splitted in the system.

Reduced Rating T-Connected Autotransformer Based Thirty-Pulse AC-DC Converter for Vector Controlled Induction Motor Drives

  • Singh Bhim;Bhuvaneswari G.;Garg Vipin
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.214-225
    • /
    • 2006
  • The design and performance analysis of a reduced rating autotransformer based thirty-pulse AC-DC converter is carried out for feeding a vector controlled induction motor drive (VCIMD). The configuration of the proposed autotransformer consists of only two single phase transformers, with their windings connected in a T-shape, resulting in simplicity in design, manufacturing and in a reduction in magnetics rating. The design procedure of the autotransformer along with the newly designed interphase transformer is presented. The proposed configuration has flexibility in varying the transformer output voltage ratios as required. The design of the autotransformer can be modified for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. The proposed thirty-pulse AC-DC converter is capable of suppressing less than $29^{th}$ harmonics in the supply current. The power factor is also improved to near unity in the wide operating range of the drive. A comparison of different power quality indices at AC mains and DC bus is demonstrated in a conventional 6-pulse AC-DC converter and the proposed AC-DC converter feeding a VCIMD. A laboratory prototype of the proposed autotransformer based 30-pulse AC-DC converter was developed with test results validating the proposed design and system.

A Study on Bridge Live Loads and Traffic Modes (도로교 차량하중 및 통행특성에 관한 연구)

  • Kim, Sang Hyo;Park, Hung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.107-116
    • /
    • 1992
  • The structural integrity of bridges is mainly damaged by overloaded heavy vehicles. The increasing volumes of overloaded heavy vehicles has been indicated as serious state. As results several countries have revised their bridge load codes. However, because of variety of truck types and their weights it is difficult to develop rational standard truck loads. In addition the common practice that only one design configuration of standard truck is adopted to design variety of bridges causes further difficulties. The objective of the study is to investigate the statistical characteristics of vehicle loadings based on survey data collected, in which some major factors, such as vehicle configurations, vehicle weights, traffic modes, etc., are incorporated. The vehicle load effects due to single presence of heavy truck are also tested with several short-span bridges and probabilistic characteristics of current design practices are evaluated.

  • PDF

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.