• Title/Summary/Keyword: brick URM

Search Result 7, Processing Time 0.018 seconds

Experimental investigation of the shear strength of hollow brick unreinforced masonry walls retrofitted with TRM system

  • Thomoglou, Athanasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.355-372
    • /
    • 2022
  • The study is part of an experimental program on full-scale Un-Reinforced Masonry (URM) wall panels strengthened with Textile reinforced mortars (TRM). Eight brick walls (two with and five without central opening), were tested under the diagonal tension (shear) test method in order to investigate the strengthening system effectiveness on the in-plane behaviour of the walls. All the URM panels consist of the innovative components, named "Orthoblock K300 bricks" with vertical holes and a thin layer mortar. Both of them have great capacity and easy application and can be constructed much more rapidly than the traditional bricks and mortars, increasing productivity, as well as the compressive strength of the masonry walls. Several parameters pertaining to the in-plane shear behaviour of the retrofitted panels were investigated, including shear capacity, failure modes, the number of layers of the external TRM jacket, and the existence of the central opening of the wall. For both the control and retrofitted panels, the experimental shear capacity and failure mode were compared with the predictions of existing prediction models (ACI 2013, TA 2000, Triantafillou 1998, Triantafillou 2016, CNR 2018, CNR 2013, Eurocode 6, Eurocode 8, Thomoglou et al. 2020). The experimental work allowed an evaluation of the shear performance in the case of the bidirectional textile (TRM) system applied on the URM walls. The results have shown that some analytical models present a better accuracy in predicting the shear resistance of all the strengthened masonry walls with TRM systems which can be used in design guidelines for reliable predictions.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Seismic performance of retrofitted URM walls with diagonal and vertical steel strips

  • Darbhanzi, Abbas;Marefat, Mohammad S.;Khanmohammadi, Mohammad;Moradimanesh, Amin;Zare, Hamid
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.449-458
    • /
    • 2018
  • Earthquakes have shown the vulnerability of unreinforced masonry (URM) structures. The aim of this research is to study a technique for in-plane seismic retrofitting of URM walls in which both diagonal and vertical steel strips are added to a single side of a URM wall. Specimens have been tested under quasi-static cyclic lateral load in combination with constant vertical load. The tests show that vertical and diagonal strips cause a significant increase in seismic capacity in terms of both strength (about 200%) and displacement at maximum (about 20%). Furthermore, this technique caused the failure modes of URM walls were influenced.

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.

Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania

  • Bilgin, Huseyin;Huta, Ergys
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.599-614
    • /
    • 2018
  • This study focuses on the earthquake performance of two URM buildings having typical architectural configurations common for residential use constructed per pre-modern code in Albania. Both buildings are unreinforced clay brick masonry structures constructed in 1960 and 1984, respectively. The first building is a three-storey unreinforced one with masonry walls. The second one is confined masonry rising on five floors. Mechanical characteristics of masonry walls were determined based on experimental tests conducted according to ASTM C67-09 regulations. A global numerical model of the buildings was built, and masonry material was simulated as nonlinear. Pushover analyses are carried out to obtain capacity curves. Displacement demands were calculated according to Eurocode 8 and FEMA440 guidelines. Causes of building failures in recent earthquakes were examined using the results of this study. The results of the study showed that the URM building displays higher displacement and shear force demands that can be directly related to damage or collapse. On the other hand, the confined one exhibits relatively higher seismic resistance by indicating moderate damage. Moreover, effects of demand estimation approaches on performance assessment of URM buildings were compared. Deficiencies and possible solutions to improve the capacity of such buildings were discussed.

Vulnerability curves of masonry constructions Algiers case study

  • Djaalali, F.;Bensaibi, M.;Bourahla, N.;Davenne, L.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.609-629
    • /
    • 2012
  • This study deals with the assessment of low and mid rise multi-story buildings made of stone and /or brick, composite steel and masonry slabs from the sixties, known to be vulnerable to seismic hazard using the "vulnerability index" method based on buildings survey following Ain Temouchent (1999) and Boumerdes (2003) earthquakes, from where vulnerability curves are constructed using the translation method. The results obtained for the case study confirm what has been observed in situ.

Seismic Performance Evaluation of Unreinforced and ECC-jacketed Masonry Fences using Shaking Table Test (진동대실험을 사용한 비보강 및 ECC 자켓 보강 조적담장의 내진성능평가)

  • Yonghun Lee;Jinwoo Kim;Jae-Hwan Kim;Tae-Sung Eom;Sang-Hyun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.182-192
    • /
    • 2023
  • In this study, the efficacy of Engineered Cementitious Composite(ECC) jacket for masonry fences subjected to lateral dynamic load was experimentally verified through a shaking table test, comparing it with the performance of an unreinforced masonry(URM) fence. Firstly, dominant frequencies, modal damping ratios and deformed shapes were identified through an impact hammer test. URM and ECC-strengthened fences with heights of 940mm and 970mm had natural frequencies of 6.4 and 35.3Hz, and first modal damping ratios of 7.0 and 5.3%, respectively. Secondly, a shaking table test was conducted in the out-of-plane direction, applying a historical earthquake, El Centro(1940) scaled from 25 to 300%. For the URM fence, flexural cracking occurred at the interface of brick and mortar joint(i.e., bed joint) at the ground motion scaled to 50%, and out-of-plane overturning failure followed during the subsequent test conducted at the ground motion scaled to 30%. On the other hand, the ECC-jacketed fence showed a robust performance without any crack or damage until the ground motion scaled to 300%. Finally, the base shear forces exerted upon the URM and ECC-jacketed fences by the ground motions scaled to 25~300% were evaluated and compared with the ones calculated according to the design code. In contrast to the collapse risk of the URM fence at the ground motion of 1,000-year return period, the ECC-jacketed fence was estimated to remain safe up to the 4,800-year return period ground motion.