• 제목/요약/키워드: breathing control

검색결과 313건 처리시간 0.019초

동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발 (Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study)

  • 이석;이상훈;신동호;양대식;최명선;김철용
    • Radiation Oncology Journal
    • /
    • 제22권4호
    • /
    • pp.316-324
    • /
    • 2004
  • 목적 : 간 등의 상 복부에 위치한 종양의 방사선 조사 체적은 호흡에 의한 종양의 이동을 포함하기 때문에 방사선 조사 체적이 증가되어 방사선 독성 및 정상조직 선량이 증가하게 된다. 이러한 문제점을 극복하기 위해 동 팬텀과 초음파센서를 이용하여 호흡운동에 의한 환자 체표면의 움직임을 획득하고, 획득한 데이터의 역 값을 이용해 환자침대를 조절해줄 수 있는 호흡운동 조절 방사선치료 기술을 개발하고자 한다. 대상 및 방법 : 호흡운동에 의한 환자 체표면의 움직임을 평가하기 위해 제작한 팬텀은 조정기(BS II, 20 Mhz, 8K Byte), 센서(Ultra-Sonic, range $3\~3$ m), Computer (RS232C), Sewo Motor (Torque 2.3 Kg) 등으로 구성하였고, 제어와 구동을 위한 획득-보정-분석 프로그램을 작성하였다. 최대 2 cm 범위 내에서 팬텀을 움직이게 하였고, 팬텀의 움직임과 보정이 순차적으로 일어나도록 프로그램하였으며, x, y, z가 연속적으로 움직이도록 구성하였다. 임의의 움직임 데이터(유격이 2 cm이 되도록 하여 3차원 데이터 형태)를 입력하여 동 팬텀을 조정하고, 동시에 팬텀 움직임을 초음파 센서를 이용하여 획득한 후, 두 데이터간의 비교, 분석을 시행하였다. 이후 쥐(Guinea-pig, about 500g)를 이용하여 호흡운동에 의한 환자 체표면의 움직임을 획득한 후 획득한 데이터의 역 값으로 팬텀을 구동시킴으로써 실시간 호흡운동 조절 방사선치료 기술을 평가하였다. 결과 : 팬텀 실험에서 3 차원 입력데이터에 대한 팬텀 보정 데이터간의 정확성을 시간에 대한 거리 값으로 비교한 결과 ${\pm}1\%$ 이내의 정확성을 알 수 있었고, 이에 필요한 보정시간은 $2.34{times}10^{-4}$초임을 알 수 있었다. 또한 동물 실험에서도 동일한 방법으로 시간에 대한 거리 그래프와 획득-보정간의 지연 시간 등을 분석한 결과 팬텀 데이터와 같은 결과를 얻을 수 있었다. 결론 : 팬텀, 동물 실험 모두에서 시간에 대한 거리 값과 각각의 경우에 획득-보정간의 지연 시간을 분석한 결과 데이터 값은 ${\pm}1\%$ 이내에서 일치하였으며, 데이터 획득-보정 지연 시간은 2.34H10-4 초 이내 즉, 실시간으로 얻을 수 있어 새로운 호흡운동 조절 방사선치료 기술의 임상적용에의 가능성을 확인할 수 있었다.

급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향 (Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets)

  • 고선영;강샘;장윤실;박은애;박원순
    • Clinical and Experimental Pediatrics
    • /
    • 제49권3호
    • /
    • pp.317-325
    • /
    • 2006
  • 목 적 : 주산기 저산소성 허혈성 뇌손상의 병태 생리에서 nitric oxide(NO)가 급성 저산소성 허혈(hypoxia-ischemia, HI) 후 재산소-재관류기(reoxygenation-reperfusion, RR)에 대뇌의 혈역학 및 에너지 대사에 미치는 영향을 규명하기 위하여, NO 합성 억제제인 NG-monomethyl-L-arginine(L-NMMA)와 NO 합성 촉진제인 L-arginine(L-Arg) 투여를 통하여 뇌신경 세포에 어떠한 영향을 주는지 알아보고자 하였다. 방 법 : 생후 3일 이내의 신생자돈 28마리를 대상으로 무작위로 나누어, Sham 처치만 받은 정상 대조군(n=9), HI와 RR만 유발한 실험 대조군(n=7), HI 이후 RR 직전에 L-NMMA 투여군(n=6)과 L-arginine 투여군(n=6) 등 4군으로 구분하였다. 실험은 ether을 흡입 시킨 후 thiopental을 정주하고, 기관 삽관 후 인공호흡기 등의 처지를 끝낸 후, HI를 유발하기 위하여 실험군에서 수술 겸자로 양측 경동맥을 폐쇄한 후 8% 산소로 30분간 흡입하였고, RR을 시행하기 위하여 경동맥 폐색을 풀고 흡입 산소농도를 60%로 올려 1시간까지 투여하면서 관찰하였다. 생리적 변수로 혈압과 동맥혈 가스 소견을 관찰하였고, 뇌의 혈역학적 변화와 에너지 상태는 near infrared spectroscopy(NIRS)를 이용하여 대뇌의 산화 헤모글로빈($HbO_2$), 환원헤모글로빈(Hb), 환산 헤모글로빈(HbD), 싸이토크롬 $aa_3$(Cyt $aa_3$) 등을 지속적으로 관찰하여 비교하였다. 또한 실험 종료 시 얻은 뇌조직에서 $Na^+$, $K^+$-ATPase의 활성도 및 지질 대사산물인 conjugated dienes, 고에너지 인분자인 ATP(adeninetriphosphate)와 phosphocreatine(PCr)을 비교하였다. 결 과 : 생리적 변수의 변화에서는 실험군 모두에서 정상 대조군에 비하여 혈압, 동맥혈 산소 분압, pH, base excess 등이 유의하게 감소하였고(P<0.05), 젖산은 유의하게 증가하였다(P<0.05). L-NMMA와 L-Arg군에서 실험 대조군과 유의한 차이는 없었다. 실험군에서 RR 1시간 후 pH를 제외한 혈압, 동맥혈 산소 분압, base excess 등의 이상소견은 모두 기저치로 회복되었고, 실험군간에 유의한 차이가 없었다. NIRS 소견에서 $HbO_2$와 HbD는 HI 동안 정상 대조군에 비하여 실험군 모두에서 유의하게 감소하였으나(P<0.05), RR 직후 기저치로 회복되었으며, $HbO_2$는 RR 40분 이후 정상 대조군에 비해 유의하게 감소하였다(P<0.05). Hb은 정상 대조군을 제외한 모든 실험군에서 HI 동안 유의하게 증가하였다가(P<0.05), RR 직후 기저치로 회복되었다. 산화 Cyt $aa_3$는 HI 동안 실험군 모두에서 감소하는 경향을 보였고, RR 이후 다시 증가하였다. 정상 대조군과 각 실험군간에 유의한 차이는 없었다. 뇌의 $Na^+$, $K^+$-ATPase 활성도와 conjugated dienes은 실험군 모두에서 정상 대조군(제1군)에 비하여 유의하게 감소하였다(P<0.05). 뇌의 ATP, phosphocreatine은 실험군 모두에서 정상 대조군과 차이가 없었고, 또한 실험군간에도 유의한 차이가 없었다. 결 론 : 신생 자돈에서 급성 저산소성 허혈 이후 재산소-재관류기 동안 NO 합성 억제제인 L-NMMA나 NO 생성 촉진제인 L-arginine이 뇌 혈역학이나 뇌의 에너지 대사에는 특별한 변화를 일으키지 않았다. 따라서 급성 저산소성 허혈성 뇌손상에서 재산소화 재관류기 초기에는 NO가 뇌손상의 주요한 기전으로 작용하지 않을 것으로 사료된다. 또한 뇌혈역학 및 생화학적 검사 결과 등에서 급성기에는 에너지 부전 상태가 주요한 세포손상 기전이 아니고, 이온 농도의 변화에 의한 뇌부종, 산소유리기에 의한 뇌세포 손상이 저산소성 허혈성 뇌손상의 급성기에 주로 작용하는 뇌세포 손상의 주요 기전임을 시사한다. 따라서 NO 생성 억제제 혹은 생성 전구물질인 L-Arg은 뇌신경 세포 보호 효과를 보이지 않아 급성 주산기 가사의 치료제로서 제한이 됨을 알 수 있었다. 그러나 좀 더 명확한 효과를 보기 위하여 선택적 억제제의 사용, 제제의 용량 및 투여시기, 손상 후 좀더 긴 시간 이후의 변화에 대한 연구가 필요하다.

전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현 (Implementation of integrated monitoring system for trace and path prediction of infectious disease)

  • 김은경;이석;변영태;이혁재;이택진
    • 인터넷정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.69-76
    • /
    • 2013
  • 세계적으로 전파력과 병원성이 높은 신종인플루엔자, 조류독감 등과 같은 전염병이 증가하고 있다. 전염병이란 특정 병원체(pathogen)로 인하여 발생하는 질병으로 감염된 사람으로부터 감수성이 있는 숙주(사람)에게 감염되는 질환을 의미한다. 전염병의 병원체는 세균, 스피로헤타, 리케차, 바이러스, 진균, 기생충 등이 있으며, 호흡기계 질환, 위장관 질환, 간질환, 급성 열성 질환 등을 일으킨다. 전파 방법은 식품이나 식수, 곤충 매개, 호흡에 의한 병원체의 흡입, 다른 사람과의 접촉 등 다양한 경로를 통해 발생한다. 전 세계의 대부분 국가들은 전염병의 전파를 예측하고 대비하기 위해서 수학적 모델을 사용하고 있다. 하지만 과거와 달리 현대 사회는 지상과 지하 교통수단의 발달로 전염병의 전파 속도가 매우 복잡하고 빨라졌기 때문에 우리는 이를 예방하기 위한 대책 마련의 시간이 부족하다. 그러므로 전염병의 확산을 막기 위해서는 전염병의 전파 경로를 예측할 수 있는 시스템이 필요하다. 우리는 이러한 문제를 해결하기 위해서 전염병의 실시간 감시 및 관리를 위한 전염병의 감염 경로 추적 및 예측이 가능한 통합정보 시스템을 구현하였다. 이 논문에서는 전염병의 전파경로 예측에 관한 부분을 다루며, 이 시스템은 기존의 수학적 모델인 Susceptible - Infectious - Recovered (SIR) 모델을 기반으로 하였다. 이 모델의 특징은 교통수단인 버스, 기차, 승용차, 비행기를 포함시킴으로써, 도시내 뿐만 아니라 도시간의 교통수단을 이용한 이동으로 사람간의 접촉을 표현할 수 있다. 그리고 한국의 지리적 특성에 맞도록 실제 자료를 수정하였기 때문에 한국의 현실을 잘 반영할 수 있다. 또한 백신은 시간에 따라서 투여 지역과 양을 조절할 수 있기 때문에 사용자가 시뮬레이션을 통해서 어느 시점에서 어느 지역에 우선적으로 투여할지 백신을 컨트롤할 수 있다. 시뮬레이션은 몇가지 가정과 시나리오를 기반으로 한다. 그리고 통계청의 자료를 이용해서 인구 이동이 많은 주요 5개 도시인 서울, 인천국제공항, 강릉, 평창, 원주를 선정했다. 상기 도시들은 네트워크로 연결되어있으며 4가지의 교통수단들만 이용하여 전파된다고 가정하였다. 교통량은 국가통계포털에서 일일 교통량 자료를 입수하였으며, 각도시의 인구수는 통계청에서 통계자료를 입수하였다. 그리고 질병관리본부에서는 신종인플루엔자 A의 자료를 입수하였으며, 항공포털시스템에서는 항공 통계자료를 입수하였다. 이처럼 일일 교통량, 인구 통계, 신종인플루엔자 A 그리고 항공 통계자료는 한국의 지리적 특성에 맞도록 수정하여 현실에 가까운 가정과 시나리오를 바탕으로 하였다. 시뮬레이션은 신종인플루엔자 A가 인천공항에 발생하였을 때, 백신이 투여되지 않은 경우, 서울과 평창에 각각 백신이 투여된 경우의 3가지 시나리오에 대해서, 감염자가 피크인 날짜와 I (infectious)의 비율을 비교하였다. 그 결과 백신이 투여되지 않은 경우, 감염자가 피크인 날짜는 교통량이 가장 많은 서울에서 37일로 가장 빠르고, 교통량이 가장 적은 평창에서 43일로 가장 느렸다. I의 비율은 서울에서 가장 높았고, 평창에서 가장 낮았다. 서울에 백신이 투여된 경우, 감염자가 피크인 날짜는 서울이 37일로 가장 빨랐으며, 평창은 43일로 가장 느렸다. 그리고 I의 비율은 강릉에서 가장 높으며, 평창에서 가장 낮았다. 평창에 백신을 투여한 경우, 감염자가 피크인 날짜는 37일로 서울이 가장 빠르고 평창은 43일로 가장 느렸다. I의 비율은 강릉에서 가장 높았고, 평창에서는 가장 낮았다. 이 결과로부터 신종인플루엔자 A가 발생하면 각 도시는 교통량에 의해 영향을 받아 확산된다는 것을 확인할 수 있다. 따라서 전염병 발생시 전파 경로는 각 도시의 교통량에 따라서 달라지므로, 교통량의 분석을 통해서 전염병의 전파 경로를 추적하고 예측함으로써 전염병에 대한 대책이 가능할 것이다.