• 제목/요약/키워드: breaking strength and modulus

검색결과 25건 처리시간 0.025초

A Study on the Mechanical Change of Emulsion-Treated Hair by Color

  • Ko, Hee-Ja;Park, Jang-Soon
    • 한국염색가공학회지
    • /
    • 제34권2호
    • /
    • pp.127-133
    • /
    • 2022
  • With the increasing interest in the expression of individuality and appearance of modern people, it is time to conduct research and development of novel hair coloring from various angles. Therefore, taking into account the order of discoloration of hair pigments, we selected a creative and novel emulsion as a novel material for hair coloring, rather than a cosmetic material such as hot water extract using natural products dealt with in previous studies, commercially available hair manicure, and oxidation hair dye for hair. Thus, the change in tensile strength and elongation of hair samples by color was studied. As a result of the study, hair with green emulsion paint had a significantly higher maximum load, maximum stress, maximum elongation and breaking load, breaking stress, breaking elongation values are shown. Maximum in terms of modulus, green emulsion applied hair and the control group were higher in the 0-15s strain and 15-145s sections, respectively, and the tangential modulus value was much higher in the control group than the experimental group hairs in all the 0-145s sections. This study, which analyzes the dynamic changes of hair samples that extend the daily color gamut, will greatly contribute to the development of innovative hair coloring materials in the research and production of hair beauty works, and it is judged that it will also contribute to the development of the beauty industry.

A Study on Design Variables for Increasing the Breaking Strength of Synthetic Fiber Chain

  • Kyeongsoo Kim;Seonjin Kim;Hyunwoo Cho;Dokyoun Kim;Yongjun Kang;Taewan Kim
    • 한국해양공학회지
    • /
    • 제37권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In this study, a fiber chain was developed to replace a steel chain using high-modulus polyethylene DM20. The pick count, wrapping count, and inner length were selected as the main design variables of the fiber chain and were analyzed to increase the breaking strength. Orthogonal array experiments were conducted, and the results were analyzed with respect to the breaking strength. The analysis revealed that the pick count and wrapping count had meaningful effects at significance levels within 5%. The main effect analysis revealed that a smaller pick count, larger wrapping count, and longer inner length caused the breaking strength to increase. With the wrapping count fixed at 1, a pick count less than -0.65, and an inner length greater than 0.38, the breaking strength was calculated to be greater than 300 kN. These results are expected be important factors in the derivation of an optimal combination of design variables to attain a fiber chain with a targeted strength.

Effects of Quasi-Carbonization Process on the Mechanical Properties of Spun Yarn Type Quasi-Carbon Fabrics

  • Donghwan Cho;Lee, Jongmoon;Park, Jon-Kyoo
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.318-324
    • /
    • 2002
  • In this paper we have extensively studied what and how processing parameters for quasi-carbonization influence the breaking strength and modulus of resulting quasi-carbon fabrics that are prepared from stabilized PAN fabrics with a spun yarn texture. Seven processing parameters have been considered as follows: applied tension, final heat-treatment temperature, heating rate, heating step, holding time, cooling rate, and purging gas purity. The results indicate that optimal uses of applied tension, final heat-treatment temperature, heating rate, and heating step during quasi-carbonization process are primarily important to increase the tensile properties of quasi-carbon fabrics and holding time, cooling rate, and purging gas purity are less importantly contributed.

견사의 탄성적성질에 관한 연구 1. 견층부위별견사의 항장성 (Reological Studies on Cocoon Filament. 1. Tensile Properties of Filament by the Portion of Cocoon Layer)

  • 남중희
    • 한국잠사곤충학회지
    • /
    • 제14권1호
    • /
    • pp.43-47
    • /
    • 1972
  • 견층부위별견사의 기계적특성을 파악하고저 Deniroscope와on을 이용하여 실험한바 다음과 같은 결과를 얻었다. 1) 견층별견사의 건조 및 습윤절단강도는 견사섬도감소율에 비례하여 저하한다. 2) 내층견사의 습윤항장력은 외층견사에 대하여 37%로 나타났다. 3) 습윤처리에 의한 전견층의 절단강도(g/d) 31%, 감소하였다. 4) 대섬도당 견사의 건조 및 습윤절단강도는 내층견사가 제일 높았다. 5) Apparent young's modulus는 내층견사에서 증가하였다. 6) 습윤견사의 절단신도는 건조견사에 비해 15% 증가하였다.

  • PDF

백모(白毛) 커버(cover)용 화학염모제 처리 모발의 미용학적 분석 (For white Hair Cover for Chemical Hair Dye Treated Hair Cosmetic Analysis)

  • 오정선;박장순
    • 한국융합학회논문지
    • /
    • 제10권6호
    • /
    • pp.281-286
    • /
    • 2019
  • 현대인에게 외모는 경쟁력의 수단이며 이러한 현대인의 욕구에 위해요소로 작용하는 요인 중 하나는 백모(白毛)이다. 백모를 커버하여 타인에게 아름다운 외모를 표출해야 하는 현대인을 위하여 백모 염모제 시술 후 모발분석을 실시하였다. 실험결과 1N-3N 화학염모제의 control 대조군과 1N부터 3N 실험군 간에 최대하중, 최대 인장 강도, 최대 신장률, 파단하중, 파단강도, 파단 신장률, 평가구간에 따른 최대 모듈러스 및 tangential modulus가 대체적으로 유의적인 차이를 보였다. 최대 하중과 최대 인장강도, 파단 하중과 파단 강도가 대조군에 비해 커다란 경향을 보인 반면 최대 신장률과 파단 신장률은 대조군이 가장 큰 값으로 실험군 처리에 따라 신장률이 감소하였다. 평가구간에 따른 최대 모듈러스와 tangential modulus는 대조군에 비해 1N-3N 실험군들이 0~0.15와 0.15~2.5 등 모든 strain 구간에서 대체적으로 높게 나타났다. 백모 커버용 산화염모제의 시술 전후 모발의 미용학적 변화에 대한 연구를 바탕으로 올바른 화학염모제 제품의 선택, 적당한 도포량 및 방치시간 등을 효과적으로 선택할 수 있는 기초자료로 활용되리라 사료된다.

MMT(Montmorillonite)를 적용한 Chopped Strand Glass Fiber-Vinylester 복합재의 인장특성 연구 (A Study on Tensile Property of MMT (Montmorillonite) Reinforced Chopped Strand Glass Fiber/Vinylester Composites)

  • 정용화;구자호;이위로;이경엽
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, MMT/fiber/polymer composites were fabricated by impregnating chopped strand glass mat into a vinylester resin mixed with clay. Tensile tests has been performed by using a universal testing machine to determine the effect of MMT addition on the tensile properties of MMT/chopped strand glass fiber/vinylester composites. And some pictures which are magnified cross section of breaking parts are has been taken by using a FE-SEM to confirm the behavior at breaking. The contents ratio of MMT applied in the composites were 0.5, 1.0, 1.5, and 2.0 wt% respectively. It has been found that the tensile strength and elastic modulus of MMT/chopped strand glass fiber/vinylester composites were improved at a proper content of MMT. Tensile strength and elastic modulus were maximized at a content of 1.0 wt% due to most effective dispersion of MMT. On the contrary, the failure strain was increased as MMT content was increased.

고에너지 방사선이 탄소섬유/에폭시 복합재료의 기계적 물성에 미치는 영향 (Effects of High Energy Radiation on the Mechanical properties of Carbon Fiber/Dpoxy Composites)

  • 박종신
    • 유변학
    • /
    • 제3권1호
    • /
    • pp.22-29
    • /
    • 1991
  • In an effort to predict the long term durability of carbon fiber/epoxy composites in a space environ-ment interlaminar shear strength (ILSS) of the composites was measured as a function of 0.5 MeV electron radiation dosage. For the ILSS measurements a notch method (ASTM D3846) was used with and without side-supports. the supports were used to prevent peeling or bending during the test. The ILSS of both T300/ 5209 longitudinal composite system increases monotonically with radiation when the test is corried out without the support the ILSS of the composites increases initially but then decreases with further radiation. It is also observed that the ILSS of the unsupported case is much lower than that of the supported case. Measurement of epoxy modulus shows that the elastic modulus increases monotonically with radiation. But the breaking strength of the epoxy decreases with radiation. Electron Spectroscopy for Chemcal Analysis shows that the oxygen contents at both the pure epoxy surface and the composite fracture surface increase with radiation dose resulting in the increase of polarity at the interfacial region. This may be a supporting evidence for the increase in the ILSS of the composites.

  • PDF

Identification of the quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety, leaf star

  • Samadi, Ahmad Fahim;Yamamoto, Toshio;Ueda, Tadamasa;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.93-93
    • /
    • 2017
  • To develop rice cultivars with increased biomass and grain yield, superior lodging resistance is an essential trait. The new breeding approach can be adopted for the improvement of stem lodging resistance by enhancing culm strength. The resistance to breaking type lodging is attributed to bending moment of basal culm (M), which is composed of the section modulus (SM) and bending stress (BS). The resistance to the bending type lodging is attributed to flexural rigidity (FR) of stem, which is composed of the secondary moment of inertia (SMI) and Young's modulus (YM). Starch and cell wall components such as cellulose, hemicellulose and lignin also play a significant role in physical strength of culm, and thus affect lodging. Leaf Star has a superior lodging resistance due to its thick and stiff culm because of its high M and FR compared with Koshihikari. Furthermore, Leaf Star contains high densities of hemicellulose, cellulose and low lignin density in culm compared with Koshihikari. In this study, we performed QTL analysis for these traits associated with culm strength, using 94 recombinant inbred lines (RILs, $F_8$), derived from a cross between Leaf Star and Koshihikari. The SM in the RILs showed a continuous distribution. QTLs for SM were detected on chrs.2, 3 and 10. Leaf Star alleles increased SM on chrs. 2 and 3, but Koshihikari allele increased on chr.10. These QTLs overlapped with those QTLs identified using backcrossed inbred line derived from a cross between Chugoku 117 and Koshihikari, the parents of Leaf Star. The FR in Leaf Star was higher than that in Koshihikari due to the larger SMI and YM. 3 QTLs for SMI were detected on chrs.2, 3 and 10. Leaf Star alleles increased SMI on chrs.2 and 3, and Koshihikari alleles increased on chr.10. One QTL on chr.3 and two QTLs on chr.5 for hollocelulose content were detected with Leaf Star alleles contribution. Moreover, two QTLs were detected for hemicellulose density on chrs.3 and 5. Leaf Star allele increased hemicellulose density on chr.5, and Koshihikari allele increased on chr.3. Furthermore, two QTLs for cellulose density were detected on chr.5, and one QTL on chr.2. For starch content, one QTL on chr.3 and two QTLs on chr.5 with Leaf Star alleles contribution were detected. TULK-6 carrying a chromosome segment of Leaf Star on chr.5 in the Koshihikari genetic background showed higher densities of starch and hemicellulose than those in Koshihikari. These results suggest that the detected QTLs for culm strength could be utilized for the improvement of lodging resistance in rice by marker-assisted selection.

  • PDF

액화목재복합체(LWPC)의 제조 및 물성 (Preparation and Properties of Liquefied-Wood Polymer Composite)

  • 김철현;김강재;엄태진
    • Current Research on Agriculture and Life Sciences
    • /
    • 제27권
    • /
    • pp.29-33
    • /
    • 2009
  • Liquefied-wood polymer composite was prepared and mechanical properties was evaluated to develop potential utility of liquefied wood. The liquefied wood was made from waste wood and chemical modified with acetic anhydride and maleic anhydride (MA), phtalic anhydride (PA). The composite sheet was prepared from modified liquefied-wood and polymer(PE). The mechanical, chemical and microscopical properties composite sheet were investigated. The results were summarized as follows, 1. The tensile strength was increased and breaking elongation of composite sheet was decreased with the time of acetylation and the dosage of MA. 2. The Young's modulus of composite sheet was gradually decreased with the dosage of PA. 3. The peak intensity of 1737cm-1 in FT-IR spectra of chemical modified liquefied woods was increased. 4. The dispersity of liquefied woods with PE was improved with chemical modification.

  • PDF

Synthesis of Thermally Stable Organosilicate for Exfoliated Poly(ethylene terephthalate) Nanocomposite with Superior Tensile Properties

  • Kim, Ki-Hong;Kim, Keon-Hyong;Huh, June;Jo, Won-Ho
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.178-184
    • /
    • 2007
  • A poly(ethylene terephthalate) (PET)/organosilicate nanocomposite, with enhanced mechanical properties, has been prepared using the melt intercalation method. For this purpose, a new organic modifier has been synthesized for the preparation of organosilicate, which is thermally stable and compatible with PET. The use of the new organosilicate yielded almost exfoliated PET nanocomposite; whereas, the PET nanocomposites prepared by use of commercial organoclays (Cloisite 15A and 30B) show only an intercalated morphology. Particularly, the use of the new organosilicate showed an enhanced tensile modulus, and without sacrifice of the tensile strength and elongation on breaking, while the use of commercial organoclays only exhibit a trade-off between those mechanical properties.