• Title/Summary/Keyword: breakage

Search Result 830, Processing Time 0.021 seconds

Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation (이온화 방사선 조사에 의해 얻어진 저분자 laminarin의 분자구조 특성)

  • Choi, Jong-Il
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.780-783
    • /
    • 2013
  • Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

A survey of experience-based preference of Nickel-Titanium rotary files and incidence of fracture among general dentists

  • Lee, WooCheol;Song, Minju;Kim, Euiseong;Lee, Hyojin;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.201-206
    • /
    • 2012
  • Objectives: The purpose was to investigate the preference and usage technique of NiTi rotary instruments and to retrieve data on the frequency of re-use and the estimated incidence of file separation in the clinical practice among general dentists. Materials and Methods: A survey was disseminated via e-mail and on-site to 673 general dentists. The correlation between the operator's experience or preferred technique and frequency of re-use or incidence of file fracture was assessed. Results: A total of 348 dentists (51.7%) responded. The most frequently used NiTi instruments was ProFile (39.8%) followed by ProTaper. The most preferred preparation technique was crown-down (44.6%). 54.3% of the respondents re-used NiTi files more than 10 times. There was a significant correlation between experience with NiTi files and the number of re-uses (p = 0.0025). 54.6% of the respondents estimated experiencing file separation less than 5 times per year. The frequency of separation was significantly correlated with the instrumentation technique (p = 0.0003). Conclusions: A large number of general dentists in Korea prefer to re-use NiTi rotary files. As their experience with NiTi files increased, the number of re-uses increased, while the frequency of breakage decreased. Operators who adopt the hybrid technique showed less tendency of separation even with the increased number of re-use.

The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass (고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Kim, Young-A;Woo, Kyeongsik
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.349-354
    • /
    • 2013
  • In this paper, we conducted high velocity impact test for Carbon/Epoxy composite laminates and proposed advanced method for predicting the absorbed energy of composite laminates. During high-velocity impact test, we discovered loss of projectile mass macroscopically using high speed camera, thus we calculated the absorbed energy of composite laminates by taking loss of projectile mass into account. We proposed a model for predicting the absorbed energy of composite laminates subjected to high-velocity impact, the absorbed energy was classified into static energy and dynamic energy. The static energy was calculated by the quasi-static perforation equation that is related to the fiber breakage and static elastic energy. The dynamic energy can be divided by the kinetic energy of deformed specimen and fragment mass. Finally, the predicted absorbed energy considering loss of projectile mass was compared with experimental results.

Genotoxicity of Taxol and 10-Deacetyl Baccatin III Using Single Cell Gel Electrophoresis (Comet Assay) in Chinese Hamster Lung Fibroblast

  • Kim, Hyun-Joo;Kim, Kyung-Ran;Youn, Ji-Youn;Kim, Min-Hee;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.61-61
    • /
    • 1996
  • Taxol is used as cancer therapeutic agent. It has been known as weak posotive of chromosome aberration assay in vitro in our previous results (Ryu et al., 1996) and potent clastogens in the mouse bone marrow micronucleus (Tinwell and Ashby, 1994). We performed microgel electrophoresis to determine the effect of taxol and it's precursor 10-deacetyl baccatin III(DAB) on DNA. Microgel electrophoresis is useful, rapid, simple, visual, and sensitive technique for measuring DNA breakage and repair mechanisms in mammalian 근ells. The range of concentration used for taxol were 854, 427, 213.5, 106.8, 53.4 Ug/ml, for DAB 910 ,455, 227.5 U9/ml, Cell viability always exceed 85%. We analyzed the results by using the special software of image analyzer for this comet assay (Komet 3.0). By using this image analyzer software , we can get the result as the tail moment ((mean of tail length - mean of head lengh) x tail%DNA/100). A slight increase in DNA migration was observed for taxol at the concentration of 854 Ug/m4 in the absence of S9 mixture. No increased DNA migration was observed after treatment with DAB.

  • PDF

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

Detection of DNA Damage in Carp Using Single-Cell Gel Electrophoresis Assay for Genotoxicity Monitoring

  • Jin, Hai-Hong;Lee, Jae-Hyung;Hyun, Chang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.268-275
    • /
    • 2004
  • To investigate the potential application of the single-cell gel electrophoresis (SCGE) assay to carp as an aquatic pollution monitoring technique, gill, liver, and blood cells were isolated from carp exposed to a direct-acting mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or indirect mutagen, $benzo[\alpha]pyrene$ $(B[\alpha]P)$, then the DNA strand breakage was analyzed using the assay. Based on testing 5 different cell isolation methods and 6 electrophoretic conditions, the optimized assay conditions were found to be cell isolation by filter pressing and electrophoresis at a lower voltage and longer running time (at 0.4 V/cm for 40 min). In preliminary experiments, gill and liver cells isolated from carp exposed to MNNG in vitro exhibited DNA damage signals even with 0.5 ppb exposure, which is a much higher dose than previously reported. In the gill cells isolated from carp exposed to 0.01-0.5 ppm MNNG in vivo, significant dose-and time-dependent increases were observed in the tail for 4 days. As such, the linear correlation between the relative damage index (RDI) values and time for each dose based on the initial 48-h exposure appeared to provide effective criteria for the genotoxicity monitoring of direct-acting mutagenic pollution. In contrast, the in vivo exposure of carp to 0.25-1.0 ppm of $B[\alpha]P$ for 7 days resulted in dose-and time-dependent responses in the liver cells, in which 24-h delayed responses for metabolizing activation and gradual repair after 48 h were also observed. Thus, the negative-sloped linear correlation between the RDI and time at each dose based on the initial 48 h appeared to provide more effective criteria for the genotoxicity monitoring of indirect mutagenic pollution.

Treatment for Tarsometatarsal Fracture-Dislocation (족근-중족 관절 골절 탈구의 치료경험)

  • Chung, Yung-Khee;Yoo, Jung-Han;Park, Yong-Wook;Noh, Dong-Geun;Ha, Sung-Han
    • Journal of Korean Foot and Ankle Society
    • /
    • v.1 no.2
    • /
    • pp.112-118
    • /
    • 1997
  • Tarsometatarsal fracture-dislocation is uncommon but severe lesion. Since this lesion is sometimes difficult to recognize by roentgenography, it is easily overlooked. Three patients were treated with open reduction and internal fixation with 3.5 mm cannulated screw and K-wire, two had treatment with open reduction and internal fixation with 3.5 mm cannulated screw only and two had treatment with dosed reduction and short leg cast only between January 1994 and May 1996. The duration of follow-up ranged from twelve to twenty-nine months after the diagnosis. Results were assessed by a subjective questiormaire, physical examination, and radiographic analysis. Multiple fixation techniques for maintaining the reduction of tarsometatarsl joint have been introduced. We recent]y used the 3.5 mm cannulated screw for internal fixation of the tarso-first and second metatarsal fracture-dislocation. We think cannulated screw fixation has several advantages; 1. The cannulated screw fixation is more rigid than the K-wire fixation. 2. There is an decreased risk of screw breakage with early weight bearing. 3. It is possible to compress the involved joints, if necessary. There were no disability in all patients. One patient who was treated with delayed open reduction and internal fixation with 3.5 mm cannulated screw and K-wire had a radiographic mild degenerative arthritis. And one patient who was treated with dosed reduction and short leg cast had a mild metatarsus adductus. But. these two patients were symptom free. There was no correlation between the severity of the diastasis and the patient s functional result.

  • PDF

Experimental Reinforcement Agent for Damaged Walls of Payathonzu Temple Murals in Bagan, Myanmar

  • Lee, Na Ra;Lee, Hwa Soo;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.36 no.4
    • /
    • pp.284-295
    • /
    • 2020
  • This study focuses on reinforcement agents for wall damage, such as cracks, breakage, or delamination, for mural paintings from the Payathonzu temple. Experiments were conducted with filling and grouting agents based on the reinforcing method. In the filling reinforcement experiment, different mixing ratios of lime to sand, and additives (jaggery, seaweed glue, and Primal SF-016) were used. In the grouting reinforcement experiment, the mixing ratio of lime and pozzolan was the same, and the additive types were identical to the filling reinforcement experiment. The filling reinforcement experiment showed that there were fewer physical changes such as contraction, with a greater mixing ratio of lime to sand, however, the compressive strength decreased as the mixing ratio increased. With additives, the change in volume of agent decreased and the compressive strength increased, which was especially prominent for jaggery and Primal SF-016. The grouting reinforcement experiment showed that there was a remarkable contraction with an increased amount of moisture that originates from the characteristic of grouting agents that requires flowability. With additives, the water content of the agent decreased, whereas the compressive strength and adhesion increased. Among the additives, Primal SF-016 exhibited the highest compressive strength, and seaweed glue exhibited the most considerable viscosity and adhesion. The study results showed that the characteristics of reinforcement agents vary according to the mixing ratio and additives of the filling and grouting agents. Therefore, it is necessary to selectively apply the mixing ratio and additives for different reinforcement agents considering the wall damage for conservation treatments.

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Effects of Explosion on Structures (폭발이 구조물에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Information on overpressure, positive phase duration, and impulse are required to assess the effects of shock waves or pressure waves on the structure. In this study, the overpressure and positive phase duration were determined by applying the Multi-Energy Method, which is found to be effective in analyzing the explosion of vapor clouds. Based on the total heat of combustion estimated in the cyclohexane vapor cloud explosion in the Nypro Ltd(UK), overpressure and positive phase duration at the distance of 40, 80, 120, 160, 200, 240, 280, 320, 360(m) from the source of explosion were evaluated. Overpressure was shown to decrease exponentially and positive phase duration increased almost linearly with distance. A probit function was used to assess the probability of damages for the structures at each distance using the overpressure and impact obtained at the above mentioned distances. The Analyses of probability of damages have shown that there is a high probability of collapse at distances within 120m, major damage to structures within 240m, and minor damage and breakage of window panes of structures occur over the entire distances.