• 제목/요약/키워드: brand companies

검색결과 742건 처리시간 0.023초

An Exploratory Study on Channel Equity of Electronic Goods (가전제품 소비자의 Channel Equity에 관한 탐색적 연구)

  • Suh, Yong-Gu;Lee, Eun-Kyung
    • Journal of Global Scholars of Marketing Science
    • /
    • 제18권3호
    • /
    • pp.1-25
    • /
    • 2008
  • Ⅰ. Introduction Retailers in the 21st century are being told that future retailers are those who can execute seamless multi-channel access. The reason is that retailers should be where shoppers want them, when they want them anytime, anywhere and in multiple formats. Multi-channel access is considered one of the top 10 trends of all business in the next decade (Patricia T. Warrington, et al., 2007) And most firms use both direct and indirect channels in their markets. Given this trend, we need to evaluate a channel equity more systematically than before as this issue is expected to get more attention to consumers as well as to brand managers. Consumers are becoming very much confused concerning the choice of place where they shop for durable goods as there are at least 6-7 retail options. On the other hand, manufacturers have to deal with category killers, their dealers network, Internet shopping malls, and other avenue of distribution channels and they hope their retail channel behave like extensions of their own companies. They would like their products to be foremost in the retailer's mind-the first to be proposed and effectively communicated to potential customers. To enable this hope to come reality, they should know each channel's advantages and disadvantages from consumer perspectives. In addition, customer satisfaction is the key determinant of retail customer loyalty. However, there are only a few researches regarding the effects of shopping satisfaction and perceptions on consumers' channel choices and channels. The purpose of this study was to assess Korean consumers' channel choice and satisfaction towards channels they prefer to use in the case of electronic goods shopping. Korean electronic goods retail market is one of good example of multi-channel shopping environments. As the Korea retail market has been undergoing significant structural changes since it had opened to global retailers in 1996, new formats such as hypermarkets, Internet shopping malls and category killers have arrived for the last decade. Korean electronic goods shoppers have seven major channels : (1)category killers (2) hypermarket (3) manufacturer dealer shop (4) Internet shopping malls (5) department store (6) TV home-shopping (7) speciality shopping arcade. Korean retail sector has been modernized with amazing speed for the last decade. Overall summary of major retail channels is as follows: Hypermarket has been number 1 retailer type in sales volume from 2003 ; non-store retailing has been number 2 from 2007 ; department store is now number 3 ; small scale category killers are growing rapidly in the area of electronics and office products in particular. We try to evaluate each channel's equity using a consumer survey. The survey was done by telephone interview with 1000 housewife who lives nationwide. Sampling was done according to 2005 national census and average interview time was 10 to 15 minutes. Ⅱ. Research Summary We have found that seven major retail channels compete with each other within Korean consumers' minds in terms of price and service. Each channel seem to have its unique selling points. Department stores were perceived as the best electronic goods shopping destinations due to after service. Internet shopping malls were perceived as the convenient channel owing to price checking. Category killers and hypermarkets were more attractive in both price merits and location conveniences. On the other hand, manufacturers dealer networks were pulling customers mainly by location and after service. Category killers and hypermarkets were most beloved retail channel for Korean consumers. However category killers compete mainly with department stores and shopping arcades while hypermarkets tend to compete with Internet and TV home shopping channels. Regarding channel satisfaction, the top 3 channels were service-driven retailers: department stores (4.27); dealer shop (4.21); and Internet shopping malls (4.21). Speciality shopping arcade(3.98) were the least satisfied channels among Korean consumers. Ⅲ. Implications We try to identify the whole picture of multi-channel retail shopping environments and its implications in the context of Korean electronic goods. From manufacturers' perspectives, multi-channel may cause channel conflicts. Furthermore, inter-channel competition draws much more attention as hypermarkets and category killers have grown rapidly in recent years. At the same time, from consumers' perspectives, 'buy where' is becoming an important buying decision as it would decide the level of shopping satisfaction. We need to develop the concept of 'channel equity' to manage multi-channel distribution effectively. Firms should measure and monitor their prime channel equity in regular basis to maximize their channel potentials. Prototype channel equity positioning map has been developed as follows. We expect more studies to develop the concept of 'channel equity' in the future.

  • PDF

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • 제26권4호
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.