In the present work, an attempt has been made to construct branching surface from 2-D contours, which are given at different layers and may have branches. If a layer having more than one contour and corresponds to contour at adjacent layers, then it is termed as branching problem and approximated by adding additional points in between the layers. Firstly, the branching problem is converted to single contour case in which there is no branching at any layer and the final branching surface is obtained by skinning. Contours are constructed from the given input points at different layers by energy-based B-Spline approximation. 3-D curves are constructed after adding additional points into the contour points for all the layers having branching problem by using energy-based B-Spline formulation. Final 3-D surface is obtained by skinning 3-D curves and 2-D contours. There are three types of branching problems: (a) One-to-one, (b) One-to-many and (c) Many-to-many. Oneto-one problem has been done by plethora of researchers based on minimizations of twist and curvature and different tiling techniques. One-to-many problem is the one in which at least one plane must have more than one contour and have correspondence with the contour at adjacent layers. Many-to-many problem is stated as m contours at i-th layer and n contours at (i+1)th layer. This problem can be solved by combining one-to-many branching methodology. Branching problem is very important in CAD, medical imaging and geographical information system(GIS).
A new algorithm has been developed to construct surface from the contours having branches and the final smooth surface is obtained by the reversible Catmull-Clark subdivision. In branching, a particular layer has more than one contour that correspond with at least one contour at the adjacent layer. In the next step, three-dimensional composite curve is constructed from contours of a layer having correspondence with at least one contour at the adjacent layer by inserting points between them and joining the contours. The points are inserted in such a way that the geometric center of the contours should merge at the center of the contours at the adjacent layer. This process is repeated for all layers having branching problems. Polyhedra are constructed in the next step with the help of composite curves and the contours at adjacent layer. The required smooth surface is obtained in the proposed work by providing the level of smoothness.
This paper addresses a new triangulation method for constructing surface model from a set of wire-frame contours. The most important problem of contour triangulation is the branching problem, and we provide a new solution for the double branching problem, which occurs frequently in real data. The multiple branching problem is treated as a set of double branchings and an algorithm based on contour merging is developed. Our double branching algorithm is based on partitioning of root contour by Toussiant's polygon triangulation algorithml[14]. Our double branching algorithm produces quite natural surface model even if the branch contours are very complicate in shape. We treat the multiple branching problem as a problem of coarse section sampling in z-direction, and provide a new multiple branching algorithm which iteratively merge a pair of branch contours using imaginary interpolating contours. Our method is a natural and systematic solution for the general branching problem of contour triangulation. The result shows that our method works well even though there are many complicated branches in the object.
This paper addresses a new technique for constructing surface model from a set of wire-frame contours. The most difficult problem of this technique, called contour triangulation, arises when there are many branches on the surface, and causes lots of ambiguities in surface definition process. In this paper, the branching problem is reduced as the surface reconstruction from a set of virtual belts and virtual canyons. To tile the virtual belts, a divide-and-conquer strategy based tiling technique, called the BPA algorithm, is adopted. The virtual canyons are covered naturally by an iterative convex removal algorithm with addition of a center vertex for each branching surface. Compared with most of the previous works reducing the multiple branching problem into a set of tiling problems between contours, our method can handle the problem more easily by transforming it into more simple topology, the virtual belt and the virtual canyon. Furthermore, the proposed method does not involve any set of complicated criteria, and provides a simple and robust algorithm for surface triangulation. The result shows that our method works well even though there are many complicated branches in the object.
Journal of the Korean Society for Precision Engineering
/
v.20
no.4
/
pp.174-182
/
2003
Recently, medical imaging has taken interest on CAD based solution for anatomical part fabrication or finite element analysis of human body. In principle, contours representing object boundary are obtained through image processing techniques. Surface models are then approximated by a skinning method. For this, various methods should be applied to medical images and contours. The major bottleneck of the reconstruction is to remove shape inconsistency between contours and to generate the branching surface. In order to solve these problems, bi-directional smoothing and the composite contour generation method are proposed. Bi-directional smoothing has advantage of removing the shape inconsistency between contours and minimizing shrinkage effect with a large number of iterations. The composite contour by the proposed method ensures smooth transition in branching region.
Proceedings of the Korean Society of Precision Engineering Conference
/
1994.10a
/
pp.719-724
/
1994
This paper describes a hybrid surface-based method for smooth 3D surface approximation to a sequence of 2D cross sections. The resulting surface is a hybrid G $^{1}$ surface represented by a mesh of triangular and rectangular Bezier patches defined on skinning, branching, or capping regions. Each skinning region is approximated with a closed B_spline surface, which is transformed into a mesh of Bezier patches. Triangular G $^{1}$ surfaces are constructed over brabching and capping regions such that the transitions between each capping regions such that the transitions between each triangular surface and its neighboring skinning surfaces are G $^{1}$ continuous. Since each skinning region is represented by an approximated rectangular C $^{2}$ suface instead of an interpolated trctangular G $^{[-1000]}$ surface, the proposed method can provide more smooth surfaces and realize more efficient data reduction than triangular surfacebased method.
The left main descending artery (LMDA) of left coronary artery (LCA) in rats runs around the left side of conus arteriosus after arising from the aortic sinus and descends to the apex of heart with branching several branches into the wall of left ventricle (LV). The ligation site of LMDA for myocardial infarction (MI) is the 2~4 mm from LCA origin, between the pulmonary trunk and left auricle. The characteristics that rat heart has no interventricular groove on the surface and its coronary arteries run intramyocardially with branching several branches give the difficulty in surgery for MI which resulted in expected size. This study was aimed to elucidate the branching patterns of the left coronary artery for analysis of MI size and for giving the basic data to producing small MI intentionally in 2 male species that are widely used, Sprague-Dowley (SD) and Wistar-Kyoto (WKY), in the world. Red latex casting was followed by the microdissection in 27 and 28 hearts of SD and WKY male rats, respectively. The branching patterns of LMDA were classified into 3 major types and others based on the left ventricular branches (L). The Type I, Type II, Type III and others are shown in 55.6%, 22.2%, 14.8%, and 7.4% in SD, 60.7%, 10.7%, 7.1%, and 21.5% in WKY, respectively. The branching number of the first left ventricular branch (L1) that are distribute the upper one third of LV was 1.2~1.5, and its branching sites were ranging 0.9~2.1 ᒠfrom LCA origin. L2, the second left ventricular branch distributing middle one third of LV, was the number of 1.2~1.4 and branching out ranging 5.1~5.7 mm. L3, the third left ventricular branch of LMDA distributing lower one third of LV, was the number of 1~1.5 and branching out ranging 7.0~9.3 mm from LCA origin. The common branch of L1 and L2 was branched from LMDA with the number of 1.1, and its site was located in the distance of mean of 1.5 mm and 2.8 mm in SD and WKY, respectively. The common branch of L2 and L3 was branched from LMDA with the number of 1, and its site was located in the distance of mean of 7.2 mm and 2.9 mm in SD and WKY, respectively. The right ventricular branches (R) of LMDA were short and branched in irregularly compared with L. The number of 1~4 of R were branched from LMDA. With regarding to the distribution area of L and the ligation site for MI, moderate MI (25~35% of LV) might be resulted in 70.4% and 60.7% in SD and WKY rats. Small MI might be produced intentionally if the ligation would be located at the 4~6 mm from LCA origin in the left side of LMDA. These data wold be helpful to expect the size of MI and to reproduce of small MI, intentionally, in rat hearts.
We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.
In this article we consider axes of a complete embedded minimal surface in $R^3$ of finite total curvature, and then prove that there is no planar ends at which the Gauss map have the minimum branching order if the minimal surface has a single axis.
Journal of the Korean Society for Precision Engineering
/
v.10
no.4
/
pp.81-93
/
1993
The three dimensional(3D) shape reconstruction from two dimensional(2D) cross-sections can be completed through three main phases : the input compilation, the triangular grid formation, and the smooth surface construction. In the input compilation phase, the cross-sections are analyzed to exctract the input data required for the shape reconstruction. This data includes the number of polygonized contours per cross-section and the vertices defining each polygonized contour. In the triangular grid formation phase, a triangular grid, leading to a polyhedral approximations, is constructed by extracting all the information concerning contour links between two adjacent cross- sections and then performing the appropriate triangulation procedure for each contour link. In the smooth surface construction phase, a smooth composite surface interpolating all vertices on the triangular grid is constructed. Both the smooth surface and the polyhedral approximation can be used as reconstructed models of the object. This paper proposes a new method for reconstructing the geometric model of a 3D objdect from a sequence of planar contours representing 2D cross-sections of the objdect. The method includes the triangular grid formation algorithms for contour closing, one-to-one branching, and one-to-many braanching, and many-to-many branching. The shape reconstruction method has been implemented on a SUN workstation in C.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.