• Title/Summary/Keyword: branched electrode

Search Result 10, Processing Time 0.027 seconds

High-resolution Capacitive Microaccelerometers using Branched finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계)

  • 한기호;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • This paper presents a navigation garde capacitive microaccelerometer, whose low-noise high-resolution detection capability is achieved by a new electrode design based on a high-amplitude anti-phase sense voltage. We reduce the mechanical noise of the microaccelerometer to the level of 5.5$\mu\textrm{g}$/(equation omitted) by increasing the proof-mass based on deep RIE process of an SOI wafer. We reduce the electrical noise as low as 0.6$\mu\textrm{g}$/(equation omitted) by using an anti-phase high-amplitude square-wave sense voltage of 19V. The nonlinearity problem caused by the high-amplitude sense voltage is solved by a new electrode design of branched finger type. Combined use of the branched finger electrode and high-amplitude sense voltage generates self force-balancing effects, resulting in an 140% increase of the bandwidth from 726㎐ to 1,734㎐. For a fixed sense voltage of 10V, the total noise is measured as 2.6$\mu\textrm{g}$/(equation omitted) at the air pressure of 3.9torr, which is the 51% of the total noise of 5.1$\mu\textrm{g}$/(equation omitted) at the atmospheric pressure. From the excitation test using 1g, 10㎐ sinusoidal acceleration, the signal-to-noise ratio of the fabricated microaccelerometer is measured as 105㏈, which is equivalent to the noise level of 5.7$\mu\textrm{g}$/(equation omitted). The sensitivity and linearity of the branched finger capacitive microaccelerometer are measured as 0.638V/g and 0.044%, respectively.

Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가)

  • Han, Gi-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

A High Resolution Capacitive Single-Silicon Microaccelerometer using High Amplitude Sense Voltage for Application to Personal Information System (고 감지 전압을 이용한 개인 정보기기용 고정도 정전용량형 단결성 실리콘 가속도계)

  • Han, Ki-Ho;Cho, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.53-58
    • /
    • 2001
  • This paper presents a high resolution capacitive microaccelerometer for applications to personal information systems. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-mass based on deep RIE process. We reduce the electrical noise level by increasing the amplitude of an AC sense voltage. The high sense voltage is obtained by DC-to-DC voltage multiplier. In order to solve the nonlinearity problem caused by the high sense voltage, we modify the conventional comb electrode of straight finger type into that of branched finger type, resulting in self force-balancing effects for enhanced detection linearity. The proposed branched finger capacitive microaccelerometer was fabricated by the deep RIE process of an SOI wafer. The fabricated microaccelerometer reduces the electrical noise at the level of $2.4{\mu}g/\sqrt{Hz}$ for the sense voltage of l6.5V, which is 10.1 times smaller than the electrical noise level of $24.3{\mu}g/\sqrt{Hz}$ at 0.9V. For the sense voltage higher than 2V, the electrical noise level of the microaccelerometer became smaller than the constant mechanical noise level of $11{\mu}g/\sqrt{Hz}$. Total noise level, including the electrical noise and the mechanical noise, has been measured as $9{\mu}g/\sqrt{Hz}$ for the sense voltage of 16.5V, which is 3.2 times smaller than the total noise of $28.6{\mu}g/\sqrt{Hz}$ for the sense voltage of 0.9V. The self force-balancing effect results in the increased stiffness of 1.98 N/m at the sense voltage of 17.8V, compared to the stiffness of 1.35 N/m at 0V, thereby generating the additional stiffness at the rate of $0.002N/m/V^{2}$.

  • PDF

Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells (염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발)

  • Park, Jeong-Hyun;Kim, Jae-Hong;Ahn, Kwang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Discharge Characteristics between Needle and Plane Electrodes in Water under Impulse Voltages (임펄스전압에 의한 침 대 평판전극에서 수중방전특성)

  • Choi, Jong-Hyuk;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.67-74
    • /
    • 2008
  • In this paper we describe discharge characteristics between needle-to-plane electrodes in water in various conditions such as different impulse voltages, polarities and water resistivities. Streamer corona is initiated at the tip of needle electrode and propagates toward plane electrode, and it experiences the final jump across the test gap. The branched channels of streamer coronas for lower water resistivities are much thicker and brighter than those for higher water resistivities at the same level of applied voltage. The negative streamer coronas not only have more branches but also widely spread out compared to the positive streamer coronas. A number of pulse-like currents ranging from some hundreds mA to a few A after streamer corona onset were produced with discharge developments. The time-lags-to breakdown for the positive polarity were remarkably shorter than those for the negative polarity. The pre-breakdown energy supplied into the test gap was inversely proportional to water resistivity.

Electrical Treeing Deterioration and Dielectric Breakdown Phenomena in Polymeric Insulator (고분자 절연재료에서 전기트리 열화 및 절연파괴 현상)

  • Cho, Yeong-Sin;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.398-403
    • /
    • 1999
  • Studies on the electrical treeing deterioration and dielectric breakdown phenomena in the polymeric insulator of polyethylene and epoxy resin were carried out. Block type samples with needle-plane electrode geometry were electrically stressed and the tree pattern from the needle tip was observed. In LDPE the density of electrical tree was very high and its pattern was bush type. For the case of XLPE, branched tree was observed. As temperature and SN content increased, the dielectric breakdown voltage decreased and the treeing phenomena became more complicated. Fan type cracks were observed around the conducting tree path in the brittle DGEBA/MDA system.

  • PDF

Biosensing interfaces based on the dendrimer-underlying layer on gold

  • Yun, Hyeon-Cheol;Kim, Hak-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.52-55
    • /
    • 2000
  • Structually organized mono- and multilayers were developed on gold for the catalytic and affinity biosensing using hyper-branched dendrimers. For the catalytic biosensing interface, a new approach to construct a multilayered enzyme film on the electrode surface was developed. The film was prepared by layer-by-layer depositions of dendrimers and periodate-oxidized glucose oxidase. The voltammograms obtained from the GOx/dendrimer multilayered electrodes revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers. From the analysis of voltammetric and ellipsometric signals, the coverage of active enzyme per layer during the layering steps was estimated, demonstrating the spatially-ordered multilayer formation. As an extension of the study, dendrimers having various degrees of ferrocenyl modification were prepared and used. The resulting electrodes were electrochemically characterized, and the density of ferrocenyl groups, active enzyme coverage, and sensitivity were estimated. For the affinity-sensing surrface, a biosensor system based on avidin-biotin interaction was developed. As the building block of affinity monolayer, G4 dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. And the biotinylated and electroactive dendritic monolayer was used for the affinity-sensing surface interacting with avidin. Electrochemical characterization of the resulting biosensor was conducted using free enzyme in electrolyte in terms of degree of surface coverage with avidin and subsequent surface shielding.

  • PDF