• Title/Summary/Keyword: branched dextrin

Search Result 6, Processing Time 0.027 seconds

Effects of Branched Dextrin on the Quality Characteristics of Frozen Soft Roll Dough and its Bread during Storage (분지 덱스트린 첨가가 냉동 소프트롤 반죽 및 빵의 저장 중 품질 특성에 미치는 영향)

  • Park, Jin-Hee;Lim, Chun-Son;Kim, Il-Hwan;Kim, Mun-Yong
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.507-522
    • /
    • 2011
  • In this study, samples of wheat flour and dough were prepared by adding of 1, 3, or 5% branched dextrin, which is produced from the amylopectin of waxy corn starch using a cyclization reaction with a branching enzyme. The samples were then evaluated qualitatively in terms of farinogram, viscogram, and extensogram characteristics. The fermentation power of dough expansion, extensogram characteristics, specific volume, baking loss, external/internal surface appearance, and sensory qualities were also examined after 4 weeks of storage at -20$^{\circ}C$ to determine the effect on freeze-thaw stability and quality improvement of branched dextrins in the soft roll bread formulation. Furthermore, the samples along with a control were compared regarding their quality characteristics, including changes in moisture content, water activity, color, and textural characteristics during a storage period of 4 days at 20$^{\circ}C$ to determine the effect on preventing retrogradation of the branched dextrin. As the branched dextrin content increased, area and extensibility increased, whereas water absorption, fermentation power of dough expansion, resistance/extensibility ratio, baking loss, and brownness of the crust decreased. However, the control group presented significantly higher peak viscosity, resistance, specific volume, taste, overall acceptability, moisture content, water activity, springiness, cohesiveness, and resilience values than those of the branched dextrin samples, whereas lightness, hardness, and chewiness showed the reverse effect. As the storage period increased, lightness, hardness, and chewiness increased, whereas cohesiveness decreased. In conclusion, the results indicate that adding 1~3% branched dextrin into a soft roll bread formulation from frozen dough had no positive effect on freeze-thaw stability or preventing retrogradation but may provide good nutritional properties.

Physicochemical Properties of Corn Starch-derived Branched Dextrin Produced by a Branching Enzyme

  • Song, Eun-Bum;Min, Byoung-Cheol;Hwang, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.234-240
    • /
    • 2008
  • The optimal conditions for the production of branched dextrin from com starch (CSBD) using branching enzyme (BE) were established by investigating the degree of retrogradation of the gelatinized starch. The physicochemical properties of CSBD prepared using the established process were evaluated. It was found that physicochemical properties of com starch were greatly modified by BE treatment. CSBD had a higher dextrose-equivalent value and water solubility than the corresponding control. On the other hand, the viscosities in gelatinized solution and amylose contents of CSBD were lower than those of the control. A high-performance size-exclusion chromatography/multiangle laser light scattering/retractive index (HPSEC/MALLS/RI) system showed that the average molecular weight of CSBD was lower than that of the control. The pasting viscosities of CSBD were stable during the entire temperature cycle. In general, the BE treatment resulted in the retrogradation during storage being lower for CSBD than for the control.

A Study on Sugars in Korean Sweet Rice Drink "Sikhye" -4. Glutinous Rice Sikhye- (식혜의 이소말토올리고당에 관한 연구 -4보 찹쌀식혜-)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.180-185
    • /
    • 1997
  • Sikye was produced from glutinous rice. The glutinous rice Sikhye was found to contain 7.3% of limit dextrin, 10.1% of maltose, 1.3% of maltotriose and 1.75% of rice residue. Limit dextrin in glutinous rice Sikhye was purified by ethanol fractionation followed by gel chromatography on Biogel P-2. The purified limit dextrin showed both signal of $\alpha$-1,4- and $\alpha$-1,6-glucosidic linkage with its estimation ratio of 5:1 by 1H-NMR analysis. Limit dextrin was digested with enzymes(30units/ml) of $\alpha$-amylase, $\alpha$-glucosidase and glucoamylase from Aspergillus awamori, sweet potato $\beta$-amylase and human salivary $\alpha$-amylase at 37$^{\circ}C$ for 1 hour, respectively. Hydrolysis rates of these amylases on it were similar that of rice Sikhye. $\alpha$-Glucosidase plus human salivary $\alpha$-amylase hydrolyzed it to 18%. The results suggest that glutinous rice is more effective to produce high level of branched maltooligosaccharide compared with rice as raw material for Sikye making.

  • PDF

Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli

  • Nguyen, Dang Hai Dang;Park, Sung-Hoon;Tran, Phuong Lan;Kim, Jung-Wan;Le, Quang Tri;Boos, Winfried;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.357-366
    • /
    • 2019
  • We first confirmed the involvement of MalQ (4-${\alpha}$-glucanotransferase) in Escherichia coli glycogen breakdown by both in vitro and in vivo assays. In vivo tests of the knock-out mutant, ${\Delta}malQ$, showed that glycogen slowly decreased after the stationary phase compared to the wild-type strain, indicating the involvement of MalQ in glycogen degradation. In vitro assays incubated glycogen-mimic substrate, branched cyclodextrin (maltotetraosyl-${\beta}$-CD: G4-${\beta}$-CD) and glycogen phosphorylase (GlgP)-limit dextrin with a set of variable combinations of E. coli enzymes, including GlgX (debranching enzyme), MalP (maltodextrin phosphorylase), GlgP and MalQ. In the absence of GlgP, the reaction of MalP, GlgX and MalQ on substrates produced glucose-1-P (glc-1-P) 3-fold faster than without MalQ. The results revealed that MalQ led to disproportionate G4 released from GlgP-limit dextrin to another acceptor, G4, which is phosphorylated by MalP. In contrast, in the absence of MalP, the reaction of GlgX, GlgP and MalQ resulted in a 1.6-fold increased production of glc-1-P than without MalQ. The result indicated that the G4-branch chains of GlgP-limit dextrin are released by GlgX hydrolysis, and then MalQ transfers the resultant G4 either to another branch chain or another G4 that can immediately be phosphorylated into glc-1-P by GlgP. Thus, we propose a model of two possible MalQ-involved pathways in glycogen degradation. The operon structure of MalP-defecting enterobacteria strongly supports the involvement of MalQ and GlgP as alternative pathways in glycogen degradation.

Relationship between Molecular Structure of Rice Amylopectin and Texture of Cooked Rice (쌀의 아밀로펙틴 분자구조와 밥의 텍스쳐)

  • Kang, Kil-Jin;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.105-111
    • /
    • 1995
  • The relationship betwwen the molecular structure of amylopectin and the texture of cooked rice was investigated using Korean rice [3 varieties of Japonica type and 3 varieties of Tongil type(Japonica-Indica breeding type)]. The molecular structure of rice amylopectin was polymodal and distributed A chain of $\overline{DP}$ 12.4, short B chain of $\overline{DP}$ 20.6, B chain of $\overline{DP}$ 26.3, long B chain of $\overline{DP}$ 45 and super long chain of above $\overline{DP}$ 55. The super long chain of amylopectin was composed of long linear chain with poorly branched chain. Also, the super long chain of amylopectin showed positive correlated with average chain length, inherent viscosity and ${\beta}-amyloysis$ limit$({\%})$, but negative correlated with ${\lambda}max$ of iodine reaction of amylopectin. The structural properties of amylopectin in Japonica type were different from those of amylopectin in Tongil type. In relationship between molecular structure of amylopectin and texture of cooked rice, the average chain length, inherent viscosity, ${\beta}-amyloysis$ limit and super long chain of amylopectin was showed a positive correlation with hardness, but a negative correlation with adhesiveness of cooked rice. The long chain of rice amylopectin is the less, the eating quality of cooled rice was the better. These results suggest that the molecular structure of rice amylopectin could be responsible for the texture of cooked rice.

  • PDF