• Title/Summary/Keyword: branch point

Search Result 406, Processing Time 0.029 seconds

A Study on Linearity and Efficiency Enhancement of Power Amplifier (전력증폭기의 선형성 및 효율 향상에 관한 연구)

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.618-627
    • /
    • 2005
  • In this paper, we have compared and analyzed the performance of high amplifier using Doherty technique to improve linearity and efficiency of base station and repeater Power amplifier for WCDMA. This Doherty amplifier implements with 3dB branch line coupler and $90^{\circ}C$ transmission line The phase offset line is designed to maintain the high linearity and efficiency at the low efficiency Period of the power amplifier CW 1-tone experimental results at the WCDMA frequency $2.11{\sim}2.17GHz$ shows that Doherty amplifier which achieves power add efficiency(PAE) of 50% at 6dB back off the point from maximum output power 52.3 dBm, obtains higher efficiency of 13.3% than class AB Finding optimum bias Point after adjusted gate voltage, Doherty amplifier shows that $IMD_3$ improves 4dB.

Dynamic Modelling of Planar Mechanisms Using Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1977-1985
    • /
    • 2003
  • In the present study, the dynamic modelling of planar mechanisms that consist of a system of rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a dynamically equivalent constrained system of particles. Then for the resulting equivalent system of particles, the concepts of linear and angular momentums are used to generate the equations of motion without either introducing any rotational coordinates or distributing the external forces and force couples over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.

IMPROVING REGIONAL OVERPOWER PROTECTION TRIP SET POINT VIA CHANNEL OPTIMIZATION

  • Kastanya, Doddy
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.799-806
    • /
    • 2012
  • In recent years, a new algorithm has been introduced to perform the regional overpower protection (ROP) detector layout optimization for $CANDU^{(R)}$ reactors. This algorithm is called DETPLASA. This algorithm has been shown to successfully come up with a detector layout which meets the target trip set point (TSP) value. Knowing that these ROP detectors are placed in a number of safety channels, one expects that there is an optimal placement of the candidate detectors into these channels. The objective of the present paper is to show that a slight improvement to the TSP value can be realized by optimizing the channelization of these ROP detectors. Depending on the size of the ROP system, based on numerical experiments performed in this study, the range of additional TSP improvement is from 0.16%FP (full power) to 0.56%FP.

Large strain analysis of two-dimensional frames by the normal flow algorithm

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.529-544
    • /
    • 2010
  • Nonlinear equations of structures are generally solved numerically by the iterative solution of linear equations. However, this iterative procedure diverges when the tangent stiffness is ill-conditioned which occurs near limit points. In other words, a major challenge with simple iterative methods is failure caused by a singular or near singular Jacobian matrix. In this paper, using the Newton-Raphson algorithm based on Davidenko's equations, the iterations can traverse the limit point without difficulty. It is argued that the propose algorithm may be both more computationally efficient and more robust compared to the other algorithm when tracing path through severe nonlinearities such as those associated with structural collapse. Two frames are analyzed using the proposed algorithm and the results are compared with the previous methods. The ability of the proposed method, particularly for tracing the limit points, is demonstrated by those numerical examples.

Design Study of a Large Diameter Backward Wave Oscillator on Slow Wave Instability Analysis (지파 불안정성 해석에 의한 대구경 후진파발진기의 연구)

  • Kim, Won-Sop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • We have designed the backward wave oscillator operating at 24 GHz. From the research which sees researches in the goal which will design and will produce K-band BWO where is a backward wave oscillator which departs from cycle prisoner 24 GHz until now is higher. To design Chrencov instibility and branch of family used a slow cyclotron instibility. Calculation used a dispersion relation and in order for as the box over-flow not to happen, a asymtotic expansion. Used a beam mode and a waveguide mode and axial symmetry and expense used in compliance with sattle point interpreted the relationship of axial symmetry.

Miscibility and Properties of cis-Polybutadiene/Ethyl-Branched Polyethylene Blends (II)

  • Cho, Ur-Ryong
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.66-72
    • /
    • 2000
  • Cis-Polybutadiene (cis-PBD) and the three polyethylenes (PE's) having different branch content were mixed to investigate crystallinity, thermodynamic interaction parameter(c), and diluents effect. Crys-tallinty of PE's decreased with increasing content of amorphous cis-PBD because of a decrease in both the degree of annealing and kinetics of diffusion of the crystallizable polymer content. The thermodynamic interaction parameter(c) for the three blend systems approximately equals to zero near the melting point. These systems were determined to be miscible on a molecular scale near or above the crystalline melting point of the crystalline PE's. From the measurement of T$\sub$m/ vs. T$\sub$c/ behavior, all the three blends showed a straight line for a plot of T$\sub$m/ vs. T$\sub$c/. This result means that the melting behavior of PE is mainly due to a diluent effect of cis-PBD component.

  • PDF

A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks (신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구)

  • Ju, Won-Sik;Jo, Seok-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

The Study on Nonlinear Compensation Characteristics of Multi-tap Update Algorithm in Broadband PCS Channel

  • Lee, Seung-Dae
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.2
    • /
    • pp.77-82
    • /
    • 2008
  • The diversity reception and the equal gain combining technique are applied to the compensation of the distortion of channel, which occurs in transmission of data at rapid speed. DSSS BPSK system which has the receiving structure with the compensation algorithm is formed on the diversity branch, and the characteristics of the system are evaluated at the view point of the average bit error rate due to the SNR. In addition, the multi-tap update algorithm which is superior for the data compensation is suggested. Moreover, using the American Joint Technical Committee PCS RF channel characterization and system deployment model standard, the suggested multi-tap update algorithm is compared and analyzed with the view-point of the average bit error rate and convergence speed for evaluating the realistic efficiency of the system.

  • PDF

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.