• Title/Summary/Keyword: braking force

Search Result 266, Processing Time 0.025 seconds

A Study On the Design and Constant Torque Control of the Eddy Current Brake For a High-speed Railway Train (고속전철용 와전류제동장치의 설계 및 정토크 제어에 관한 연구)

  • Ryu, Hong-Je;Gang, Gyeong-Ho;U, Myeong-Ho;Kim, Jong-Su;Gang, Do-Hyeon;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.611-616
    • /
    • 1999
  • The introduction of the eddy current braking(ECB) system in HSRT(high speed railway train) is known to be advantageous, in that the system is independent on wheel-rail adhesion coefficient which is greatly affected by weather condition. It also minimize the maintenance of the brake system and does not require any additional electric energy because it is powered form the regenerated power at the time of the braking. In this study, the braking and attraction forces of the ECB are simulated by 2-D FEM and are experimentally verified on a down-scaled prototype. A control algorithm of the ECB is proposed to generate constant braking torque using linear variation of the reference current according to speed. Experimental results shows that the constant torque is generated over all operating speed region by developed control algorithm.

  • PDF

A Study on Velocity-Brake Force Resulted from Deceleration Signal (감속도 신호에 의한 속도-제동력 고찰)

  • Lee, U-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.616-620
    • /
    • 2003
  • Brake action is important in train operation. In case of diesel motor cas, coachs and wagon, the brake system is only act on the stop of train, but it is emphasis on safety and convenience in urban transit system such as EMU, subwar, AGT, etc. Brake of EMU has two types. one is called service brake that is used at normal operation. The other is called emergency brake. it is used at emergency operation. Service brake bring a EMU to a halt through a blending brake that form electronic brake and frictional brake. Generally EMU compose motor car and trailer car. Blending brake bring a EMU to a halt through a blending brake that form electronic brake of motor car and frictional brake of trailer car. Blending braking technology have different characteristics each nations or manufacturing companies. but deceleration command that is parameter decide blending brake. According to deceleration command, electronic brake and frictional brake are applied differently So braking power is different. electronic brake and frictional brake must be used appropriately as deceleration command. Also braking facilities must be stopped EMU more economically and safely through revision of algorism about blending brake according to output diagram. Thus The purpose of paper is to propose blending braking control way as consideration of braking output diagram used deceleration command that influence blending brake of EMU.

  • PDF

A Method of Controlling the Driving and Electric Braking Force of the Electric Motor (전동기의 구동 및 전기 제동력 제어 방법)

  • Kwag, Yeon-geun
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.280-284
    • /
    • 2020
  • To improve maintenance, environmental issues, efficiency, and economics to supplement the current air braking problems, braking power related to the entire driving range of electric brakes was presented in all areas from stop to high speed. As a result, the efficiency of braking power and cutting-edge technology have expanded energy use, and through this paper, noise in all driving ranges can be reduced, and maintenance costs can be reduced. The traction motor must bring the variable speed of the traction motor and the terminal voltage of the traction motor to drive high-speed driving characteristics that control the maximum voltage of the inverter. Therefore, we studied driving and brake changes through simulation.

Braking force to reduce the vibration impact study (진동이 제동력 감소에 미치는 영향에 대한 고찰)

  • Kwon, Jin;Kou, Bon-Min;Jeon, Yeon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.836-841
    • /
    • 2011
  • In recent years, the concern about the reliability of railway vehicles is increasing, Many studies on reliability is in progress. But, the existing railway cars have been running without any specific criteria for vibration. So, we looked into the effect of the vibration and braking devices.

  • PDF

A Study on Stress Distribution of Korean High Speed Train Wheel at Tread Braking (한국형 고속전철의 답면제동에 의한 차륜의 응력분포에 관한 연구)

  • 권범진;김호경;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.411-416
    • /
    • 2002
  • The strength evaluation of a wheel is becoming very important due to the high speed of railway system and the reduction of wheel weight. Therefore, in this study, the influence of thermal stress at tread breaking in Korean High Speed Train wheel was investigated using FEM. During FEM analysis, the mechanical load or wheel-rail contract load and braking load were considered. When 300% of the block force was applied, the maximum von Mises stress of 61.0 ㎫ was found at the outside plate around 400mm far away from the wheel center.

  • PDF

A Study on the precious stopping control for the automatic electric rail cars (도시철도 전차의 정위치 정차 제어에 관한 연구)

  • Park, Mun-Gyu;Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.228-230
    • /
    • 2006
  • While trains perform a complete precision stopping control at stop point, it is essential to keep better commuters comfort in prompt. Because a train's brake force tends to increase a brake effort in a low speed and a low brake effort, a brake force in motor cars must be increased to keep better passenger comfort, to control the special braking qua1ities and to prevent the impact of the automatic coupler rather than trailer's, Rail cars must have a special braking process for the train stopping control. In the train stop mode, the train stopping control is designed to start at 20km/h. It starts by Dynamic brake blending, and then finally stops by only the friction. If these process are not exactly activated, the train may fail a complete precision stop. In this report, it studied the electric and friction brake processing during the precious stopping control. To achieve exact test results, the speed reference has to be reduced the calculated difference. In the precision stopping control. the ways of the keeping brake force in motor car was analyzed and some solutions of controling air pressure was brought up by means of direct test in main line, This study was based on line 5 in Seoul Metropolitan subway.

  • PDF

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

A Study on a Fuzzy Controller for the Electronic Braking Force Distribution System (전자식 차량 제동력 배분 시스템을 위한 퍼지제어기의 연구)

  • 김승대;김훈모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.220-229
    • /
    • 2000
  • In the brake systems a proportioning valve which reduces the brake pressure at each wheel cylinder for anti-locking of rear wheels is closely related with the safety of vehicles. But, it is impossible for a present proportioning valve to exactly control brake pressure because mechanically it is an open loop control system. So, in this paper we describe a electronic brake pressure distribution system using a fuzzy controller in order to exactly control brake pressure using a close loop control system. The object of electronic brake pressure distribution system is to change an cut-in pressure and an valve slop of proportioning valve in order to obtain better good performance of brake system than with mechanical system.

  • PDF

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.

Optimal Design of Permanent Magnet Arrays for Eddy Current Brakes (와전류 브레이크를 위한 영구자석 배열의 최적설계)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.609-611
    • /
    • 2008
  • Eddy current is usually generated in material with high conductivity by time-varying source such as AC current and also is induced in the moving source with relative velocity. The contactless magnetic brakes make use of the braking force from the eddy current generated by moving source and currently used for the secondary brakes of heavy trucks, buses and rail vehicles. This study aims to design the magnetization pattern of a permanent magnet type eddy current brake system to maximize the braking force. The analysis of the brake system is based on the two-dimensional finite element analysis. We use the sequential linear programming as the optimizer and the adjoint variable method for the sensitivity analysis.

  • PDF