• Title/Summary/Keyword: brain-phospholipids

Search Result 34, Processing Time 0.023 seconds

Determination of Microviscosity and Location of 1,3-Di(1-pyrenyl) propane in Brain Membranes

  • Kang, Jung-Sook;Kang, In-Goo;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • We determined the microviscosity of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex and liposomes of total lipids (SPMTL) and phospholipids (SPMPL) extracted from SPMV. Changes in the microviscosity induced by the range and rate of lateral diffusion were measured by the intramolecular excimerization of 1, 3-di(1-pyrenyl)propane (Py-3-Py). The microviscosity values of the direct probe environment in SPMV, SPMTL and SPMPL were 38.17, 31.11 and 27.64 cP, respectively, at$37^{\circ}C$and the activation energies $(E_a)$ of the excimer formation of Py-3-Py in SPMV, SPMTL and SPMPL were 8.236, 7.448 amd 7.025 kcal/mol, respectively. Probe location was measured by polarity and polarizability parameters of the probe Py-3-Py and probe analogues, pyrene, 1-pyrenenonanol and 1-pyrenemethyl-3${\beta}$-hydroxy-22, 23-bisnor-5-cholenate (PMC), incorporated into membranes or solubilized in reference solvents. There existed a good linear relationship between the first absorption peak of the $^1_a$ band and the polarizability parameter $(n^{2}-1)/(2n^{2}+1)$.The calculated refractive index values for SPMV, SPMTL and SPMPL were close to 1.50, which is higher than that of liquid paraffin (n=l.475). The probe location was also determined by using a polarity parameter $(f-1/2f^{I})$. Here f=$({\varepsilon}-1)/(2{\varepsilon}+1)$ is the dielectric constant function and $f^I=(n^2-1)/(2n^2+1)$ is the refractive index function. A correlation existed between the monomer fluorescence intensity ratio and the solvent polarity parameter. The probes incorporated in SPMV, SPMTL, and SPMPL report a polarity value close to that of 1-hexanol $({\varepsilon}=13.29)$. In conclusion, Py-3-Py is located completely inside the membrane, not in the very hydrophobic core, but displaced toward the polar head groups of phospholipid molecules, e.g., central methylene region of aliphatic chains of phospholipid molecules.

  • PDF

Effects of the Feeding Mixed Oils with Various Level of n-3 and n-6 Polyunsaturated Fatty Acid on the Lipid Components of Liver, Brain, Testis and Kidney in Dietary Hyperlipidemic Rats (n-3 및 n-6계 다불포화 지방산의 함유비율이 다른 유지가 식이성 고지혈증 흰쥐의 간장, 뇌, 고환 및 신장의 지질 성분에 미치는 영향)

  • 김한수;김성희;김군자;최운정;정승용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.685-691
    • /
    • 1993
  • This study was designed to examine effects of the various levels of sardine and safflower oil mix on lipid contents of serveral tissues in dietary hyperlipidemic rats. Experimental oils were 16% butter(control group), 8% butter +8% olive oil(group 2) 8% butter+8% sardine oil(group 3) 8% butter+6% sardine oil+2% safflower oil(group 4), 8% butter+4% sardine oil+4% safflower oil(group 5),8% butter+2% sardine oil+6% safflower oil(group 6) and 8% butter+8% safflower oil(group 7). The diet administered to the male rats of Sprague-Dawley were fed for 4 weeks. In livers, total cholesterol and triglyceride, phospholipid concentrations were lowest in the group 5 and free cholesterol concentrations were lower in the groups 4 and 5, particularly. Total cholesterol and triglyceride concentrations in brain were significantly lower in the group 5 and phospholipids were lowest in the group 3, while free cholesterol were group 7. In testes, total cholesterol and triglyceride, phospholipid, free cholesterol concentrations were lower in the all experimental groups than the control group, but those of kidney were lower in the groups 3, 7 than in the control group. Feeding mixed oil having equal quantity of sardine oil and safflower oil were effective on the reduction of the lipid contents in the principal tissues. It might be due to the effects of appropriate ratios of P/S, 0.85 and n-6/n3-p, 2.85 in the test lipids.

  • PDF

Neuropeptides in Clinical Psychiatric Research : Endorphins and Cholecystokinins (정신질환에 있어서의 신경펩타이드 연구 - Endorphin과 cholecystokinin을 중심으로 -)

  • Kim, Young Hoon;Shim, Joo Chul
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.34-45
    • /
    • 1998
  • We provide the reader with a brief introduction to the neurobiology of neuropeptides. Several comprehensive reviews of the distribution and neurochemical, neurophysiological, neuropharmacological and behavioral effects of the major neuropeptides have recently appeared. In reviews of the large number of neuropeptides in brain and their occurance in brain regions thought to be involved in the pathogenesis of major psychiatric disorders, investigators have sought to determine whether alternations in neuropeptide systems are associated with schizophrenia, mood disorders, anxiety disorders, alcoholism and neurodegenerative disease. There is no longer any doubt that neuropeptide-containing neurons are altered in several neuropsychiatric disorders. One of the factors that has hindered neuropeptide research to a considerable extent is the lack of pharmacological agents that specifically alter the synaptic availability of neuropeptides. With the exception of naloxone and naltrexone, the opiate-receptor antagonists, there are few available neuropeptide- receptor antagonists. Two independent classes of neuropeptide-receptor antagonists has been expected to be clinically useful. Naltrexone, a potent ${\mu}$-receptor antagonist, has been used successfully to reduce the need for alcohol consumption. And cholecycstokinin antagonists are now in development as a new class of anxiolytics, which would be expected to be free from tolerance and physical dependence and lack of sedation. In this review, we deal with these two kinds of neuropeptide system, the opioid system and cholesystokinins in the brain. The role of opioid systems in the reinforcement after alcohol consumtion and that of cholesystokinins in the pathogenesis of anxiety will be discussed briefly. As we know, the future for neuropeptides in psychiatry remains bright indeed.

  • PDF

Effect of Garlic and Medicinal Plants Composites on the Liver Function and Lipid Metabolism of Rats Administered with Ethanol During the Short-term (단기 알코올 투여 시 마늘과 한약재 복합물이 체내 지질 조성 및 간기능 회복에 미치는 영향)

  • Kang, Min-Jung;Shin, Jung-Hye;Lee, Soo-Jung;Chung, Mi-Ja;Sung, Nak-Ju
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.934-942
    • /
    • 2009
  • This study was performed to observe the effect of hot-water extracts from garlic and 13 kinds of medicinal plants composites (GMP) on hyperlipidemia and hepatoprotective activity in rats administered with alcohol. Male Sprague-Dawly rats were fed an AIN-93 diet (Normal), a normal diet plus ethanol (control, 10 ml of 40% ethanoljkgjday), a control diet plus 0.5% garlic and 1.0% medicinal plants composites extracts (GMP-I), and a control diet plus 1.0% garlic and medicinal plants composites extracts (GMP-II) for 7 days. Blood glucose was higher than the control, but it was markedly decreased in the GMP-II group. Elevation total lipids, cholesterol, triglyceride and phospholipids in serum were markedly decreased in rats fed with GMP-I. GMP-II also inhibited the increase of lipid content in serum. Activities of GOT, GPT, $\gamma$-GTP and ALP in serum elevated by alcohol were significantly inhibited in the GMP group. TBARS content of serum was significantly decreased in GMP groups administered with garlic and medicinal plant extracts. Extracts of garlic and medicinal plants play an important role in recovering liver function in rats from alcohol induced damage.