• Title/Summary/Keyword: brain noise

Search Result 210, Processing Time 0.023 seconds

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle (3T MR 스핀에코 T1강조영상에서 적정의 숙임각)

  • Bae, Sung-Jin;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). Materials and Method : T1-weighted images of the cerebrum of brain were obtained from 50$^\circ$ to 130$^\circ$ FA with 10$^\circ$ interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp ($\frac{-TR}{T1}$) and Ernst angle cos $\theta$ = exp ($\frac{-TR}{T1}$). Results : The SNR of WM at 130$^\circ$ FA is approximately 1.6 times higher than the SNR of WM at 50$^\circ$. The SNR of GM at 130$^\circ$ FA is approximately 1.9 times higher than the SNR of GM at 50$^\circ$. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120$^\circ$ FA, the SNR of GM started decreasing at less than 110$^\circ$. The highest SNRs of WM and GM were obtained at 130$^\circ$ FA. The highest CNRs, however, were obtained at 80$^\circ$ FA. Conclusion : Although SNR increased with the change of FA values from 50$^\circ$ to 130$^\circ$ at 3T SE T1WI, CNR was higher at 80$^\circ$ FA than at the usually used 90$^\circ$ FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  • PDF

Frequency Recognition in SSVEP-based BCI systems With a Combination of CCA and PSDA (CCA와 PSDA를 결합한 SSVEP 기반 BCI 시스템의 주파수 인식 기법)

  • Lee, Ju-Yeong;Lee, Yu-Ri;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.139-147
    • /
    • 2015
  • Steady state visual evoked potential (SSVEP) has been actively studied because of its short training time, relatively higher signal-to-noise ratio, and higher information transfer rate. There are two popular analysis methods for SSVEP signals: power spectral density analysis (PSDA) and canonical correlation analysis (CCA). However, the PSDA is known to be vulnerable to noise due to the use of a single channel. Although conventional CCA is more accurate than PSDA, it may not be appropriate for the real-time SSVEP-based BCI system when it has short time window length because it uses sinusoidal signals as references. Therefore, the two methods are not efficient for the real-time BCI system that requires a short TW and a high recognition accuracy. To overcome this limitation of the conventional methods, this paper proposes a frequency recognition method with a combination of CCA and PSDA using the difference between powers of canonical variables obtained from the results of CCA. Experimental results show that the performance of the combination of CCA and PSDA is better than that of CCA for the case of a short TW.

Analysis of Acoustic Psychology of City Traffic and Nature Sounds (도심 교통음과 자연의 소리에 대한 음향심리 분석)

  • Kyon, Doo-Heon;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2009
  • In modern society, most people of the world are densely populated in cities so that the traffic sound has a very significant meaning. people tend to classify traffic sound as a noise pollution while they are likely to categorize most nature sound as positive. In this paper, we applied various forms of FFT filters into white noise belonged in nature sound to find frequency characteristics of white noise which preferred by people and confirm its correlation with nature sound. In addition, we conducted an analysis through the comparison of various traffic and nature sound waveforms and spectra. As a result of analysis, the traffic sound have characteristics which sound energy had concentrated on specific frequency bandwidth and point of time compared to nature sound. And we confirmed the fact that these characteristics had negative elements to which could affect to people. Lastly, by letting the subjects listen directly to both traffic and nature sound through brainwave experiment using electrode, the study measured the energy distribution of alpha waves and beta waves. As a result of experiments, it has been noted that urban sound created a noticeably larger amount of beta waves than nature sound; on the contrary, nature sound generated positive alpha waves. These results could directly confirm the negative effects of traffic sound and the positive effects of nature sound.

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF

The Study on the Ultrastructure and Distribution of Dopaminergic Cells in the Brain of Mongolian Gerbil after Water Deprivation (절수에 의한 Mongolain gerbil 뇌 Dopamine성 면역반응세포의 분포와 미세구조의 변화에 관한 연구)

  • Song, Chi-Won;Lee, Kyoung-Youl;Park, Il-Kwon;Kwon, Hyo-Jung;Kim, Moo-Kang;Lee, Kang-Lee
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.193-204
    • /
    • 2000
  • Nowadays, mongolian gerbil is widely utilized in the research of brain and water deprivation because of congenitally incomplete Willis' circle, audiogenic seizure in low noise, and special cholesterol metabolism without water absorption for a long time. In this study, we intended to identify the time lapse changes in the general morphoogy and ultrastructure of the catecholaminergic neurons of mongolian gerbil brain in after long-term water deprivation. Fifteen mongolian gerbils were divided into 3 groups (5, 10, and 20-day water deprivation groups), each with 5 mongolian gerbils. Additional 5 mongolian gerbils which received water without limitation were used as a control. The brain sections were immunostained using tyrosine hysroxylase (TH), $ dopamine-\beta-hydroxylase$ (DBH), and phenylethanolamine-N-methyltrasferase (PMNT) antibodies. And immunoreactive cells were observed by electromicroscopy for the ultrastructural changes . The TH-immunoreactive (TH-IR) nerve cells were observed in the para- and peri-ventricular nucleus of the 3 rd ventricle in the hypothalamus and the substantia nigra. The number of TH-IR neurons in these areas was decreased from the 5th day of the water deprivation to the 10 th day and reincreased until 20 th day water deprivation. The shape and density of the dopamine-secreting cells identified by immunohistochemistry showed changes in the continuous water deprivation. Electron microscopy revealed a round nucleus in the neurons of control group but 5-day water deprivation group showed a dense and irregularly shaped nucleus. Also in the 5-day water-deprived group, mitochondria was decreased in number and junctins were disappered. Endoplasmic reticulum, Golgi complex did not show changes after water-deprivation. In this results, we can conclude that dopamine are involved in the water metabolism in mongolian gerbil, and mongolian gerbil could be used as an animal model for the researches of water deprivation.

  • PDF

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Effect of Gd-DTPA on Diffusion in Canine Brain with Hyperacute Stroke (초급성 뇌경색을 일으킨 개에서 Gd-조영제의 주입이 뇌의 확산에 미치는 영향)

  • 김범수;정소령;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 2002
  • Purpose : To evaluate the effect of Gd-DTPA on signal intensity of diffusion-weighted magnetic resonance(MR) image and apparent diffuse coefficient (ADC) in dog brain with hype racute stroke. Materials and methods : Experimental canine model of hyperacute cerebral infarction was made by selective intraarterial embolization with particulate embolic material. Diffusion-weighted MR imaging was performed in five dogs at 1 hour after the embolization of internal carotid artery. After intravenous bolus injection of Gd- DTPA, additional 11 diffusion-weighted MR images were serially obtained from 2 minutes to 90 minutes after injection in each dog. The author evaluated findings of hyperacute cerebral infarction on diffusion-weighted MR imaging, and calculated mean signal intensity and mean ADC in infarcted region and contralateral normal region. Statistical analysis of mean signal intensity, mean ADC and contrast-noise ratio before and after Gd-DTPA injection was performed. Results : Hyperacute cerebral infarction developed in all five dogs on diffusion-weighted MR images obtained 1 hour after embolization. The area of hyperacute infarction had steady increase in signal intensity on diffusion-weighted MR image and decrease in ADC. In normal perfusion area, decrease in signal intensity was observed at 2 minutes the Gd-DTPA injection, whereas ADC did not changed. Conclusion : Intravenous injection of Gd-DTPA had no influence on ADC in both hyperacute infarction and normally perfused are a, but caused initial transient signal reduction in normally perfused area on diffusion-weighted MR image due to susceptibility effect of Gd-DTPA. It is important to calculate ADC in evaluating the effect of diffusion after injection of Gd-DTPA.

  • PDF

The Optimization of Hybrid BCI Systems based on Blind Source Separation in Single Channel (단일 채널에서 블라인드 음원분리를 통한 하이브리드 BCI시스템 최적화)

  • Yang, Da-Lin;Nguyen, Trung-Hau;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • In the current study, we proposed an optimized brain-computer interface (BCI) which employed blind source separation (BBS) approach to remove noises. Thus motor imagery (MI) signal and steady state visual evoked potential (SSVEP) signal were easily to be detected due to enhancement in signal-to-noise ratio (SNR). Moreover, a combination between MI and SSVEP which is typically can increase the number of commands being generated in the current BCI. To reduce the computational time as well as to bring the BCI closer to real-world applications, the current system utilizes a single-channel EEG signal. In addition, a convolutional neural network (CNN) was used as the multi-class classification model. We evaluated the performance in term of accuracy between a non-BBS+BCI and BBS+BCI. Results show that the accuracy of the BBS+BCI is achieved $16.15{\pm}5.12%$ higher than that in the non-BBS+BCI by using BBS than non-used on. Overall, the proposed BCI system demonstrate a feasibility to be applied for multi-dimensional control applications with a comparable accuracy.

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.