• Title/Summary/Keyword: brain fatty acid composition

Search Result 38, Processing Time 0.019 seconds

Effect of Riboflavin on the Metabolism of Lipids and Neurotransmitter in Rat Brain (리보플라빈이 뇌조직이 지방과 신경전달 물질대사에 미치는 영향)

  • 이상선
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.680-691
    • /
    • 1993
  • Rats were fed for an 8-week period a low riboflavin diet(5ug riboflavin/day) or a control diet(30ug/day) supplied either ad libitum or by pair feeding in order to study the effect of riboflavin on the metabolism of lipids and neurotransmitters. Erythrocyte glutathione reductase (EGR) and monomine oxidase(MAO) activity in the liver and brain were assayed. EGR activity coefficient in riboflavin deficient rats was significantly higher than in ad libitum controls whereas MAO activity was decreased in the deficient rats. Fatty acid composition showed a different trend in the serum, liver and brain. In the serum, the concentrations of essential fatty acids and $\omega$-3 fatty acids(eicosapentaenoic acid, docosahexaenoic acid)were decreased about 20-40% in the deficient and pair-fed than in the ad libitum controls. Brain serotonin and 5-HIAA(5-hydroxyindole acetic acid) concentrations were decreased in the riboflavin deficient rats. Learning ability measured by a water maze and exploratory activity using the open field test were not impaired in the deficient rats. These results indicate that brain lipid metabolism was protected in subclinical riboflavin deficiency, however, riboflavin deficiency affected brain serotonin content.

  • PDF

Effects of Dietary Fatty Acid Composition on Level of Oleic Acid (ω9) in Brain Subcellular Fractions of Rats (식이 지방산이 흰쥐 뇌조직 Subcellular Fractions내 Oleic Acid(ω9) 조성에 미치는 영향)

  • Chung, Eon-Jung;Um, Young-Soak;Lee, Yang-Cha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1626-1633
    • /
    • 2004
  • In recent, the roles of oleic acid, most abundant fatty acid in myelin, were investigated in relation to the brain functions. This study examined the effects of diets either with desirable ratios of $\omega$6/ $\omega$9 and P/M/S (mixed oil-fed group: MO) or with defficient in $\omega$3 series fatty acids (safflower oil-fed group: SO) on the oleic acid composition in RBC and brain synaptosomal, mitochondrial & microsomal phospholipids. The desirable fatty acid composition was computer-searched with different fats and oils to meet right ratios of both $\omega$6/ $\omega$3 and P/M/S. Diets were fed 3 weeks before conception and new-born pups were fed maternal milk from the same mothers and same diets until 9 wks of age. At 3 wks of age, the compositions of oleic acid in brain subcellular fractions and red blood cells were constantly remained whatever the composition of dietary fatty acids. But at 9 wks of age, the composition of oleic acid in synaptosome and mitochondria were significantly higher in MO group than SO group. The composition of oleic acid in milk was significantly higher in MO group than SO group, but in case of SO group, that of oleic acid was increased by 48%, in comparison with dietary fatty acid compositions. -9 desaturase index (18:0\longrightarrow8:1) of brain synaptosome was significantly higher in MO group than SO group at 3 and 9 weeks of ages, but that of brain microsome was higher in SO group than MO group at 9 wks of age. Taken together, the presences of oleic acid in the diet was important to maintain brain functions. The origins of oleic acid in brain may suggests two hypotheses; first, the central nervous system has priority for the uptake of oleic acid, and second the nervous system can synthesize all the oleic acid it needs, independently of its presence in the diet.

The Effects of DHA-Supplemented Formula on the Fatty Acid Composition of Erythrocyte and Brain Development in Full-Term Infants (DHA 보충이 영아의 적혈구 지방산조성과 두뇌발달에 미치는 영향)

  • 손보경
    • Journal of Nutrition and Health
    • /
    • v.30 no.5
    • /
    • pp.478-488
    • /
    • 1997
  • Omega-3 fatty acid, docosahexaenoic acid(DHA) is found in a high proportion in the structural lipids of cell membranes, in particular those of the central nervous system and the retina. Diet-induced changes in fatty acid composition in these tissues may affect physiochemical functions. This study was conducted to investigate whether supplements of DHA in infant formula has an effect on the composition of fatty acids in erythrocytes with regard to brain development. Experimental groups were breastmilk group(n=21), placebo formula group(n=15), and DHA supplemented formula (0.26%) group(n=16). Infants were selected by mothers who deliverecdd at Kyung Hee medical center from February to April, 1996. Infant body weight, length, and head circumference were similar among the experimental groups at 16 weeks of age. The levels of DHA in breastmilk, placebo formula, and DHA supplemented formula were 0.56, 0, and 0.26% of total fatty acids, respectively. There was a significant correlation between dietary DHA intake and erythrocyte DHA levels. The levels of arachidonic acid did not differ among the three expermental groups. The result of flash visual evoke potential(VEP) test was correlated with the erythrocyte levels and dietary DHA levels at 16 weeks of age. No other fatty acid was correlated with VEP test results. No differences were found in Bayley Mental and Psychomotor Development Index scores among the three groups at 20 weeks of age. DHA seems to be an essential nutrient for optimum growth and maturation of term infants. Relatively small amounts of dietary DHA supplementation significantly elevate DHA supplementation significantly elevate DHA content in erythrocytes, which in turn has an implication for better scores for infant's VEP test. Whether supplementation of formula-fed infants with DHA has long-term benefits remains to be elucidated.

  • PDF

Effects of ${\omega}-3$ and ${\omega}-6$ Fatty Acids from Prenatal to Growing Period on the Brain Growth and Behavioral Development of the Rats ($\omega3$$\omega6$계 지방산이 흰 쥐의 뇌 성장과 지능발달에 미치는 영향)

  • 이윤희
    • Journal of Nutrition and Health
    • /
    • v.28 no.7
    • /
    • pp.602-611
    • /
    • 1995
  • This study was designed to find out the effects of $\omega$-3 and $\omega$-6 polyunsaturated and saturated fatty acid from prenatal to growing period on the brain growth and behavioral development of rats. Rats(Sprague-Dawley strain) were fed experimental diets-fish oil, corn oil or beef tallow-with different contents of $\omega$-3 and $\omega$-6 fatty acids throughout the prenatal and lactational period and up to 10 weeks of age. DNA and RNA concentration of rat brain were determined at 0, 3, 6 weeks of age and choline and acetylcholine concentrations were analyzed at 10 weeks of age. When the rats were 7 weeks of age, position reversional test in a Y-shaped water maze for 4 weeks was measured. The experimental results obtained are summarized as follows. Food intakes were significantly lower in fish oil group and body weight gain was low in the group fed beef tallow and the groups fed fish oil and corn oil were somewhat good. Food efficiency ratio was not significantly different among the groups. Brain weight was not affected by the fatty acid composition of experimental diets and DNA and RNA concentration of the rat brain were consistently maintained at the same level. It was not different significantly among the dietary groups in the DNA and RNA concentrations of the rat brain during the experimental period. The acetylcholine concentration in the fish oil group was somewhat higher than the other groups. The position reversional test in a Y-shaped water maze showed a significant difference the score of test among the experimental groups. The score of the rats fed the fish oil diet was significantly higher than the other groups and the concentration of acetylcholine in brain were too. Therefore the correlatin between the Y-shaped water maze test score and the acetylcholine concentratin in the brain was found. Above finding support the content that dietary fatty acid composition does not affect to the brain cell number and cell size but the behavior development is influenced. Therefore, the improvement of behavior development is required the effective usage of finny tribe.

  • PDF

Effect of DHA-Rich Fish Oil on Brain Development and Learing Ability in Rats (DHA가 풍부한 어유가 새끼쥐의 뇌발달과 학습능력에 미치는 영향)

  • 정경숙
    • Journal of Nutrition and Health
    • /
    • v.29 no.3
    • /
    • pp.267-277
    • /
    • 1996
  • Effect of DHA-rich fish oil on brain development and learning ability has been studied in Sprague Dawley rats. Female rats were fed experimental diets containing either corn oil fish oil at 10%(w/w) level throughout the gestation and lactation. Corn oil was added in fish oil diet to supply essential fatty acid at 2.3% of the calories. All male pups were weaned to the same diets of dams at 21-days after birth. Plasma fatty acid composition was analyzed for dams and pups at 21-days, 28-days and 22-weeks after birth. The analysis of DNA and fatty acid profile in the brain were undertaken at birth, 3, 7, 14, 21, 28 days and 22 weeks after birth and learning ability was tested at 18-20 weeks of age. Regardless of dietary fats, arachidonic acid(AA) and docosahexaenoic acid(DHA) were the principal polyunsaturated fatty acids in the brain. Rats fed CO diet showed a continouus increase of AA content in the brain from 10.9%(at birth) to maximum 15.3% level (14-days old), while the rars fed FO diet showed 78-79% of CO group throughout the period. Rats fed FO diet showed higher incorparation of DHA from 15.2% at birth to a maximum level of 18.5% at 140days, while the rats fed CO diet showed only 7.0% incorporation of DHA at birth and a maximum level of 11.1% at 21-days. Compared to CO group, FO group showed lower ratio of chol/PL and higher content of DHA in brain microsomal membrane, resulting in better membrane fluidity. Total amount of DNA per gram of brain was reached maximum level at 21 days in both groups. This would be a period of the cell proliferation during brain development. Overall, the rats fed fish oil diet showed a higher incorporation of DHA and membrane fluidity in the brain and better learning performances (p<0.05).

  • PDF

Effect of Long-Term Pyridoxine Depletion on the Fatty Acid Composition of the Rat Brain (장기간의 Pyridoxine 부족이 흰쥐 뇌의 지방산 조성에 미치는 영향)

  • Choi, Hay-Mie;Lee, Hong-Mie;Kim, Jung-Hee
    • Journal of Nutrition and Health
    • /
    • v.18 no.3
    • /
    • pp.242-248
    • /
    • 1985
  • Weanling female Sprague Dawley rats were fed diets containing 22mg pyridoxine HCI/kg diet(control diet) and 1.2mg pyridoxine HCI/kg diet(deficient diet). One deficient group and one control group were fed their diets throughout the period of growth, gestation and lactation. After the pups were born and weaned, the deficient group was divided into two groups. Therefore, one(DC) switched to control diet and the other continued the same deficient diet until 10 week-old. Analysis of chemical composition of fatty acid in the total brain lipid was conducted in the pups of 5, 10, 15, 21, 35, 50 days of age. Arachidonic acid content was significantly decreased in the deficient group at 5 days compared to the control, but at almost all ages, there were no significant differences in fatty acid contens among all the groups. The fatty acid compositions of the brain phospholipids were determined on pups at 1, 14, 21, 35, 70 days of age. The content of $C_{20}\;_{4}$ in the brain phosphatidylcholine birth and contents of $C_{22}\;_{4}$ and $C_{22}\;_{5}$ at birtd, and $C_{22}\;_{5}$ and $C_{22}\;_{6}$ at 14 days in the phosphatidylethanolamine were depressed in the deficient group. These changes were not consistent with ages. Therefore, it may reflect that the major part of the changes occuring in the pyridoxine depleted rats depends, not so much on the pyridoxine depletion itself, as on the age or development of the rats.

  • PDF

Effects of Dietary Fatty Acids on fatty Acid Pattern in Development Rat Brain Phospholipids - Effects on P/M/S and $\omega$3/$\omega$6 Fatty Acid Ratios -

  • Um, Young-Sook;Chung, Eun-Jung;Lee-Kim, Yang-Cha
    • Journal of Nutrition and Health
    • /
    • v.31 no.5
    • /
    • pp.897-905
    • /
    • 1998
  • Docosahexaenoic acid(DHA), a $\omega$3 series fatty acid and arachidonic acid(AA). a $\omega$6 series fatty acid were found in relatively high concentrations in the phospholipids(PLs) of cell membranes of nerve tissues, and they can be affected by various factors. The present study examined the effects of dietary $\omega$6 and $\omega$3 fatty acid composition on P/M/S and on $\omega$3/$\omega$6 fatty acid ratios in brain PLs of 2nd generation rats. The expeimental diets consisted of 10% fat(by wt), which were computer- searched mixed oil('M') with P/M/S ratio, 1 : 1.4 : 1 and $\omega$6/$\omega$3 ratio, 6 : 1 and safflower oil('S') poor in $\omega$3 fatty acids. The experimental diets were started 3-4 wks prior to conception. During the lactation period, the feeding mothers were switched 1 wk after birth and provided the pups for 2 wks with milk which had compositions different from that of their natural mother. The same diet as their mothers was provided from weaning to 9 wks of age. The 'M'and 'S' rats were again subdivided into MM, MS, SS, SM rats according to diet which their lactating mothers were fed from the begining of the experiment. The relative percentage of P/M/S fatty acids in brain PLs in all experimental groups converged to a very similar value at 9 wks of age, indicating the existence of a control mechanism for the degree of fatty acids, unsaturation. The $\omega$3/$\omega$6 fatty acid ratios of brain PLs converged to about 1.0 in MM & SM groups and to 0.7 in SS & MS groups, suggesting also the existence of some balance between $\omega$3 and $\omega$6 fatty acids in developing rat brain. The concentrations of $\omega$3 fatty acids, especially DHA, in the SM group were increased and became similar to those in MM group at 9 wks of age. The increase in DHA of brain PLs was counterbalanced b)r a decrease in 22 5$\omega$6. Therefore, the ratios of 22 : 6$\omega$6/22 : 5$\omega$6 were higher in both MM & SM groups than those of SS & MS groups at 9 wak of age. Although dietary $\omega$3 and $\omega$6 fatty acids affected 22 : 6$\omega$S and 22 : 5$\omega$6 contained in rat brain PLs reciprocally, the relative percentage of AA did not appear to be significantly influenced by the diet in all groups at 9 wks of age, suggesting that a mechanism for the maintenance of a certain level of AA in brain PLs exists. In conclusion, the $\omega$3/$\omega$6 fatty acid and 22 : 6$\omega$3/22 : 5$\omega$6 ratios, but not P/M/S ratio, of rat brain PLs were affected by the postnatal dietary changes. Futher studies are required to clarify the mechanism(S) of ensuring a certain level of DHA and of maintaining a similar level of AA in rat brain PLs after. weaning(9 wk) regardless of prenatal and postnatal dietary changes. (Korean J Nutrition 31(5) : 897-905, 1998)

  • PDF

The Effect of Dietary n-3 and n-6 Polyunsaturated Fats on changes in Glucose, Non Esterified Fatty Acid and Fatty Acid Compositions in Serum of Rat Exposed to Stress. (N-3계 및 N-6계 지방산 식이가 스트레스에 노출된 흰 쥐의 혈당과 혈청 유리지방산 및 지방산 조성변화에 미치는 영향)

  • 장문정
    • Journal of Nutrition and Health
    • /
    • v.28 no.5
    • /
    • pp.375-386
    • /
    • 1995
  • This study was designed to investigate the changes in energy substrates, glucose and non-esterified fatty acid(NEFA), and fatty acid compositions in serum, following physiolgical stress in rats fed diets containing various fatty acids. Forty two Sprague-Dawley strain male rats, weighing 108$\pm$2.1g, were fed 3 different experimental diets for 4 weeks. The diets were composed of 105 fat(w/w) of either corn oil(CO;18:2 n6:57%), plant perilla oil(PO;18:3 n3:59%), or tuna fish oil(FO;20:5 n3:17%%, 22:6 n3:19%). After 4 weeks of feeding, each group wa subdiveided into (a) control, (b) 2 min swim in ice-cold water. Animals wer decapitated 20min after commencing the swim; trunk blood, brain, liver and epididymal fat pad were obtained. The levels of serum corticosterone, glucose, NEFA, triglyceride, fatty acid compositions, brain serotonin and 5-hydroxyindoleacetic acid were determined. Basal levels of corticosterone na NEFA of serum were significantly lower in fish oil fed animals than those of any other oil fed animals. Compared to either perilla oil-fed or corn oil-fed rats, cold swim stress in fish oil fed rats produced significantly smaller NEFA and larger corticosterone responses. However, there was no significant difference in basal levels of serum glucose. Stress increased serum glucose levels slightly, and the amount of increment was larger in fish oil rats than those of any other oil fed rats than those of any other oil fed rats, although all the values were normal level. Dietary fats and stress did not affect serotonin metabolism. In additions, the composition of fatty acids in serum was significantly affected by the dietary compostion of fatty acids and stress. Stress induced decreases in monounsaturated fatty acid and non-polyunsaturated fatty acid concentration in either perilla oil fed or fish group, but did not in corn oil fed group. Stress resulted in changes in fatty acid metabolism similar to that associated with essential fatty acid(EFA) dificiency, when feeding animals n-3 fatty acids in diet. In conclusion, feeding fish oil was more effective to decrease NEFA in serum than feeding perilla oil or corn oil and improved lipid metabolism, when the rats were maintained in normal or exposed to stressful environment. However, the fact that feeding diet containing n-3 fatty acids decreased EFA status under stress suggests that the requirement of n-6 PUFA should be increased in these groups.

  • PDF

Effects of Dietary $\omega3$ and $\omega6$ Fatty Acids on the Fatty Acid Composition of RBC and Brain Synaptosomal, Microsomal and mitochondrial Phospholipids and on Behavioral Development of Rats (식이 $\omega3$$\omega6$계 지방산 조성이 제 2세대 쥐의 RBC과 뇌조직 Synaptosome, Microsome 및 Mitochondria의 인지질 및 행동발달에 미치는 영향)

  • 엄영숙
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.849-860
    • /
    • 1996
  • The supply of different fatty acids during the development period has significant effects. This study examined the effects of dietary $\omega$3 and $\omega$6 fatty acid compositions on phospholipids (PLs) of RBC and rat brain subcellular fractions (synaptosome, microsome, mitochondria), and on learning ability of the 2nd generation rat. Rats were fed experimental diets 3-4 wks prior to the conception. Early in the lactation period, the feeding mothers were exchanged. Diets consisted of 10% fat(by weight), which was either safflower oil('S') poor in $\omega$3 fatty acids or computer-searched mixed oil('M') with P/M/S ratio, 1/1.4/1 and $\omega$6/$\omega$3 ratio, 6.1/1. The 'S' and 'M' rats were subdivided further into SS, SM, MS & MM rats according to their lactation stauts. At 3 (weaning) & 9 wks of age, the percentage of total $\omega$3 fatty acids to their lactation status. At 3 (weaning) & 9 wks of age, the percentage of total $\omega$3 fatty acids and the ratios of $\omega$3/$\omega$6 fatty acids in PLs of RBC and brain subcellular fractions in SM and MM groups fed milk from the mixed oil-fed mothers for 2 wks tended to be higher than those in SS and MS groups respectively. In contrast, the concentrations of $\omega$6 fatty acids, especially 22:5$\omega$6 in all fractions, were significantly lower in the SM & MM groups compared to those of the SS & MS groups respectively. In contrast, the concentration of $\omega$6 fatty acids, especially 22:5$\omega$6 in all fractions, were significantly lower in the SM & MM groups compared to those of the SS & MS groups, The values for the DHA$\omega$3/22:5$\omega$6 ratios after the lactation period were markedly higher in the groups (SM & MM) which were reared by mixed oil(MO) fed mothers. In carring out Y-water maze at 9th wk of age, the SM(4.2$\pm$0.5) & MM (5.3$\pm$0.5) groups made significantly less errors compared to the SS(6.2$\pm$0.6, p<0.05 compared with SM) & MM (7.2$\pm$0.5, p<0.05 compared with MM) groups which were lactated by the safflower oilfed mothers. Therefore, by feeding a balanced fatty acid diet from the lactation period up to 9 wks of age as compared with the groups fed $\omega$3 fatty acid-deficient diet regardless of mother's diet given before parturition. The levels of DHA(synaptosome) and 22:5$\omega$3 (mitochondria) were positively correlated not only with these values in RBC but also with visual discriminating ability. The levels of DHA and 22:5$\omega$3 in RBC can, therfore, reflect visual discriminatng ability in the rat.

  • PDF

Polyphosphoinositides Are Derived from Ether-linked Inositol Glycerophospholipids in Rat Brain

  • Shin, Sun-H.;Kim, Jong-S.;Kim, Hak-R.;Lim, Jin-K.;Choi, Byung-K.;Yeo, Young-K.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.360-365
    • /
    • 2005
  • Membrane inositol glycerophospholipid (IGP) is metabolized to phosphatidylinositol-4-phosphate (PIP), phosphatidylinositol-4, 5-bisphosphate ($PIP_2$), and inositol triphosphate ($IP_3$) in signaling transduction. This study was carried out to determine the subclasses of IGP involved in signaling pathway. The acyl chain moieties of the phospholipids are easily modulated by dietary fatty acids. We analyzed acyl chain composition of IGP 3-subclasses, PIP and $PIP_2$ from rat brain after feeding sunflower seed oil enriched with linoleic acid or fish oil high in eicosapentaenoic acid and docosahexaenoic acid. Long chain polyunsaturated fatty acids (LCPUFA) as eicosapentaenoic acid and docosahexaenoic acid were not incorporated into ether-linked IGP (alkenylacylglycerophosphoinositol and alkylacyl-glycerophosphoinositol), PIP and $PIP_2$, while diacyl-glycerophosphoinositol (GPI) contained high LCPUFA. These results suggest that PIP might be phosphorylated from only the ether-linked IGP (alkenylacyl- and alkylacyl species) but not from diacyl subclass for signals to intracellular responses in the plasma membrane of rat brain.