• Title/Summary/Keyword: brain drug targeting vector

Search Result 2, Processing Time 0.016 seconds

The Determination of Blood-Brain Barrier Permeability and Pharmacokinetics of a Rat Transferrin Receptor Monoclonal Antibody by Brain Perfusion Method and Intravenous Injection Technique in Mice (마우스에서 뇌관류법과 정맥투여법에 의하여 흰쥐 트란스페린 단일항체의 체내동태 및 혈액-뇌 관문 투과성의 검토)

  • 강영숙
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • Brain drug targeting through the blood-brain barrier (BBB) in vivo is possible with peptidornirnetic monoclonal antibodies that undergo receptor-mediated transcytosis through the BBB. Monoclonal antibody to the rat transferrin receptor, such as the OX26 was studied in rats as a transport vector through BBB on the transferrin receptor. But, OX26 is not an effective brain delivery vector in mouse. In the present studies, rat monoclonal antibody, 8D3 to the mouse transferrin receptor were evaluated for brain drug targeting vector intransgenic mouse model. Pharrnacokinetic parameters in plasma and organ uptakes were determined at varioustimes after i.v. bolus injection of [$^{}125}I$] 8D3 in Balb/c mice. Brain uptake of [$^{}125}I$] 8D3 was also studied with an internal carotid artery perfusioncapillary depletion method. After i.v. injection of [$^{}125}I$] 8D3, plasma concentrations declined biexponentially with elimination half lift of approximately 2.2 hours. Brain uptake of [$^{}125}I$] 8D3 was $0.50{\pm}0.09$ persent of injected dose per g brain after 2 hours i.v. injection. After perfusion 5 min the apparent volume of distibution of [$^{}125}I$] 8D3 in brain was $22.3 {\mu}l/g,$ which was 4.8 fold higher than the intravascular volume. These studies indicate rat monoclonal antibody to the mouse transferrin receptor, 8D3 may be used for brain drug targeting vector in mice.

Genetically engineered brain drug delivery vector through the blood-brain barrier

  • Seo, Kyung-Hee;Kang, Young-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.192-192
    • /
    • 1998
  • The blood - brain barrier (BBB) expresses high concentrations of transferrin receptor, and it was revealed that anti-transferrin receptor mouse monoclonal antibody (OX26) undergoes transcytosis through the BBB. This property allows the OX26 to serve as a brain drug delivery vector. In an attempt to produce broadly useful targeting agents, genetic engineering and expression techniques have been used to produce antibody-avidin (AV) fusion protein (OX26 IgG3C$\_$H/3-AV). In the present study we estimated the BBB permeability and stability of genetically engineered vector.

  • PDF