• Title/Summary/Keyword: brain development

Search Result 1,510, Processing Time 0.024 seconds

Factors Associated Postoperative Hydrocephalus in Patients with Traumatic Acute Subdural Hemorrhage

  • Kim, Han;Lee, Heui Seung;Ahn, Sung Yeol;Park, Sung Chun;Huh, Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.730-737
    • /
    • 2017
  • Objective : Postoperative hydrocephalus is a common complication following craniectomy in patients with traumatic brain injury, and affects patients' long-term outcomes. This study aimed to verify the risk factors associated with the development of hydrocephalus after craniectomy in patients with acute traumatic subdural hemorrhage (tSDH). Methods : Patients with acute traumatic SDH who had received a craniectomy between December 2005 and January 2016 were retrospectively assessed by reviewing the coexistence of other types of hemorrahges, measurable variables on computed tomography (CT) scans, and the development of hydrocephalus during the follow-up period. Results : Data from a total of 63 patients who underwent unilateral craniectomy were analyzed. Postoperative hydrocephalus was identified in 34 patients (54%) via brain CT scans. Preoperative intraventricular hemorrhage (IVH) was associated with the development of hydrocephalus. Furthermore, the thickness of SDH (p=0.006) and the extent of midline shift before craniectomy (p=0.001) were significantly larger in patients with postoperative hydrocephalus. Indeed, multivariate analyses showed that the thickness of SDH (p=0.019), the extent of midline shift (p<0.001) and the coexistence of IVH (p=0.012) were significant risk factors for the development of postoperative hydrocephalus. However, the distance from the midline to the craniectomy margin was not an associated risk factor for postoperative hydrocephalus. Conclusion : In patients with acute traumatic SDH with coexisting IVH, a large amount of SDH, and a larger midline shift, close follow-up is necessary for the early prediction of postoperative hydrocephalus. Furthermore, craniectomy margin need not be limited in acute traumatic SDH patients for the reason of postoperative hydrocephalus.

Zic3z Defines the Dorsal and Vegetal Neuroectoderm in the Zebrafish Embryonic Development

  • Lee, Kyu-Sun;Huh, Tae-Lin;Lee, Chang-Joong;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.23-33
    • /
    • 2008
  • The Zic family is a group of genes encoding zinc finger proteins that are highly expressed in the mammalian cerebellum. Zic genes are the vertebrate homologue of Drosophila pair-rule gene, odd-paired(opa), which plays important roles in the parasegmental subdivision as well as in the visceral mesoderm development of Drosophila embryos. Recent studies on human, mouse, frog, fish and ascidian Zic homologues support that Zic genes are involved in a variety of developmental processes, including neurogenesis, myogenesis, skeletal patterning, and left-right axis establishment. In an effort to explore possible functions of Zic proteins during vertebrate embryogenesis, we initially examined more detailed expression pattern of zebrafish homologue of zic3(zic3z). zic3z transcripts are detected in the neuroectoderm, neural plate, dorsal neural tube, and brain regions including eye field during early embryonic development. Marker DNA studies found that zic3z transcription is modulated by BMP, Wnt, and Nodal signals particularly in the dorsal and vegetal neuroectoderm at gastrula. Interfering with zic3z translation with zic3z-specific morpholino causes abnormal brain formation and expansion of the optic stalk cells. Retinal ganglion cells(RGCs) undergo abnormal neuronal differentiation. These findings suggest that zic3z defines the dorsal and vegetal neuroectoderm to specify brain formation and retinal neurogenesis during early embryonic development.

Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders (신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰)

  • Lee, Kyungmin
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas such as cerebral cortex, hippocampus and amygdala have abnormalities in neuroglial numbers and functions in subjects with mental illnesses including schizophrenia, dementia and mood disorders like major depression and bipolar disorder. These findings highlight the putative role and involvement of neuroglial cells in mental disorders. Herein I discuss the physiological roles of neuroglial cells such as astrocytes, oligodendrocytes, and microglia in maintaining normal brain functions and their abnormalities in relation to mental disorders. Finally, all these findings could serve as a useful starting point for potential therapeutic concept and drug development to cure unnatural behaviors and abnormal cognitive functions observed in mental disorders.

Mouse Models of Gastric Carcinogenesis

  • Yu, Sungsook;Yang, Mijeong;Nam, Ki Taek
    • Journal of Gastric Cancer
    • /
    • v.14 no.2
    • /
    • pp.67-86
    • /
    • 2014
  • Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.

Clinical Neuropsychological Evaluation (임상 신경심리학적 평가)

  • Oh, Byoung Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.1
    • /
    • pp.28-37
    • /
    • 1995
  • Clinical neuropsychology which belongs to the necuroscience field is concerned with relationship between human behaviors and the brain structure. Clinical neuropsychology has grown to be a specialized separate field within psychology over the last twenty years. Clinical neuropsychology offers an objective methodology to consider the mind-body interaction and evaluate the behavioral consequences and functional deficits associated with brain lesions. Clinical neuropsychological assessment is composed of cognitive, perceptual, motor and emotional function through various neuropsychological examinations such as Halsted-Reitan and Luria-Nebraska batteries, and computerized neuropsychological test such as PCIS Vienna Test System and Stim. The goals of neuropsychological evaluation are to identify of neuropsychological dysfuncitions, to develop execute and monitor treatment plans, and to make rehabilitation programs. Recently, the neuropsychiatric patients are increasing in number and 15-20% of acute psychiatric patients suffer from organic mental problems. Moreover, clinical neuropsychology has an increasingly important role in both neurobehavioral foundation and clinical application. So, psychiatrists must play a major role in the development of clinical neuropsychology in psychiatry.

  • PDF

Glia as a Link between Neuroinflammation and Neuropathic Pain

  • Jha, Mithilesh Kumar;Jeon, Sang-Min;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • Contemporary studies illustrate that peripheral injuries activate glial components of the peripheral and central cellular circuitry. The subsequent release of glial stressors or activating signals contributes to neuropathic pain and neuroinflammation. Recent studies document the importance of glia in the development and persistence of neuropathic pain and neuroinflammation as a connecting link, thereby focusing attention on the glial pathology as the general underlying factor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a key process in nervous system disorders involving the release of strong pro-inflammatory cytokines, which can trigger worsening of multiple disease states. This review will briefly discuss the recent findings that have shed light on the molecular and cellular mechanisms of glia as a connecting link between neuropathic pain and neuroinflammation.

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Expression of Beta-catenin-interacting Protein 1 (CTNNBIP1) Gene Is Increased under Hypothermia but Decreased under Additional Ischemia Conditions

  • Kwon, Kisang;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.168-172
    • /
    • 2014
  • It has recently been shown that hypothermia treatment improves brain ischemia injury and is being increasingly considered by many clinicians. However, the precise roles of hypothermia for brain ischemia are not yet clear. In the present study we demonstrated firstly that hypothermia induced beta-catenin-interacting protein 1 (CTNNBIP1) gene expression and its expression was dramatically decreased under ischemic conditions. It was also demonstrated that hypothermia activated endoplasmic reticulum (ER) stress sensors especially both, the phosphorylation of $eIF2{\alpha}$, and ATF6 proteolytic cleavage. However, the factors of apoptosis and autophagy were not associated with hypothermia. These findings suggested that hypothermia controlled CTNNBIP1 gene expression under ischemia, which may provide a clue to the development of treatments and diagnostic methods for brain ischemia.

Active Implantable Device Technology Trend: BCI Application Focus (능동형 임플란터블 디바이스 기술동향: BCI 응용 중심)

  • Lee, S.Q.;Byun, C.W.;Kim, Y.G.;Park, H.I.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.27-39
    • /
    • 2017
  • A variety of medical devices are utilized to repair or help injured body functions after accidental injury(such as a traffic accident), population aging, or disease. Such medical devices are being actively researched and developed in portable form, skin patchable type, and further, implantable form. In the future, active implantable medical devices for neuro and brain sciences are expected to be developed. Active implantable medical devices that detect brain signals and control neurology for a wider understanding of human cognition and nerve functions, and for an understanding and treatment of various diseases, are being actively pursued for future use. In this paper, the core elements of implantable devices that can be applied to neuro and brain sciences are classified into electrode technologies for bio-signal acquisition and stimulation, analog/digital circuit technologies for signal processing, human body communication technologies, wireless power transmission technologies for continuous device use, and device integration technologies to integrate them. In each chapter, the latest technology development trends for each detailed technology field are reviewed.

Beta-amyloid imaging in dementia

  • Chun, Kyung Ah
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Alzheimer's disease (AD) is a neurodegenerative disorder associated with extracellular plaques, composed of amyloid-beta ($A{\beta}$), in the brain. Although the precise mechanism underlying the neurotoxicity of $A{\beta}$ has not been established, $A{\beta}$ accumulation is the primary event in a cascade of events that lead to neurofibrillary degeneration and dementia. In particular, the $A{\beta}$ burden, as assessed by neuroimaging, has proved to be an excellent predictive biomarker. Positron emission tomography, using ligands such as $^{11}C$-labeled Pittsburgh Compound B or $^{18}F$-labeled tracers, such as $^{18}F$-florbetaben, $^{18}F$-florbetapir, and $^{18}F$-flutemetamol, which bind to $A{\beta}$ deposits in the brain, has been a valuable technique for visualizing and quantifying the deposition of $A{\beta}$ throughout the brain in living subjects. $A{\beta}$ imaging has very high sensitivity for detecting AD pathology. In addition, it can predict the progression from mild cognitive impairment to AD, and contribute to the development of disease-specific therapies.