The purpose of the brain-computer (machine) interface (BCI or BMI) is to provide a method for people with damaged sensory and motor functions to use their brain to control artificial devices and restore lost ability via the devices. Functional electrical stimulation (FES) is a method of applying low level electrical currents to the body to restore or to improve motor function. The purpose of this study was to develop a SSVEP-based BCI rehabilitation training system with FES for spinal cord injured individuals. Six electrodes were attached on the subjects' scalp ($PO_Z$, $PO_3$, $PO_4$, $O_z$, $O_1$ and $O_2$) according to the extended international 10-20 system, and reference electrodes placed at A1 and A2. EEG signals were recorded at the sampling rate of 256Hz with 10-bit resolution using a BIOPAC system. Fast Fourier transform(FFT) based spectrum estimation method was applied to control the rehabilitation system. FES control signals were digitized and transferred from PC to the microcontroller using Bluetooth communication. This study showed that a rehabilitation training system based on BCI technique could make successfully muscle movements, inducing electrical stimulation of forearm muscles in healthy volunteers.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.1
/
pp.62-68
/
2012
Steady-State Visually Evoked Potentials (SSVEP) are natural response signal associated with the visual stimuli with specific frequency. By using SSVEP, occipital lobe region is electrically activated as frequency form equivalent to stimuli frequency with bandwidth from 3.5Hz to 75Hz. In this paper, we propose an experimental paradigm for analyzing EEGs based on the properties of SSVEP. At first, an experiment is performed to extract frequency feature of EEGs that is measured from the image-based visual stimuli associated with specific objective with affordance and object-related affordance is measured by using mirror neuron system based on the frequency feature. And then, linear discriminant analysis (LDA) method is applied to perform the online classification of the objective pattern associated with the EEG-based affordance data. By using the SSVEP measurement experiment, we propose a Brain-Computer Interface (BCI) system for recognizing user's inherent intentions. The existing SSVEP application system, such as speller, is able to classify the EEG pattern based on grid image patterns and their variations. However, our proposed SSVEP-based BCI system performs object pattern classification based on the matters with a variety of shapes in input images and has higher generality than existing system.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.193-195
/
2003
The analysis of EEG data is an important task in the domain of Brain Computer Interface (BCI). In general, this task is extremely difficult because EEG data is very noisy and contains many artifacts and consists of mixtures of several brain waves. The P300 component of the evoked potential is a relatively evident signal which has a large positive wave that occurs around 300 msec after a task-relevant stimulus. Thus automatic detection of P300 is useful in BCI. To this end, in this paper we employ a method of reference-based independent component analysis (ICA) which overcomes the ordering ambiguity in the conventional ICA. We show here. that ICA incorporating with prior knowledge is useful in the task of automatic P300 detection.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.2
/
pp.251-256
/
2008
Many researchers are studying about human Brain-Computer Interface(BCI) that it based on electroencephalogram(EEG) signals of multichannel. The researches of EEG signals are used for detection of a seizure or a epilepsy and as a lie detector. The researches about an interface between Brain and Computer have been studied robots control and game of using human brain as engineering recently. Especially, a field of brain studies used EEG signals is put emphasis on EEG artifacts elimination for correct signals. In this paper, we measure EEG signals as human emotions and divide it into five frequence parts. They are calculated related the percentage of selecting range to total range. the calculating values are compared standard values by Bayesian Network. lastly, we show the human face avatar as human Emotion.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.6
/
pp.786-791
/
2011
An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.4
/
pp.277-282
/
2015
Braincomputer interface (BCI) technology is making advances in the field of humancomputer interaction (HCI). To improve the BCI technology, we study the changes in the electroencephalogram (EEG) signals for six levels of grip strength: 10%, 20%, 40%, 50%, 70%, and 80% of the maximum voluntary contraction (MVC). The measured EEG data are categorized into three classes: Weak, Medium, and Strong. Features are then extracted using power spectrum analysis and multiclass-common spatial pattern (multiclass-CSP). Feature datasets are classified using a support vector machine (SVM). The accuracy rate is higher for the Strong class than the other classes.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.357-358
/
2023
본 연구는 실제 행동과 운동 심상으로 팔과 다리 동작 인식을 위한 BCI 패러다임을 제안하고 유도성 분석을 한다. 이 페러다임은 각 팔과 양다리의 특정 움직임을 인식하기 위해 ERP를 기반 페러다임을 구성한다. BCI 페러다임은 왼팔, 오른팔, 양다리를 움직이는 영상 자극을 주며 이를 기반으로 왼팔, 오른팔, 양다리 움직임에 대한 인식을 한다. 거울뉴런은 실제 행동과 실제 행동을 보았을때와 운동심상을 통한 자극을 받았을 때 같은 뉴런이 활성화된다는 성질을 가지고 있다. 이러한 성질을 이용하여 운동심상만과 실제 행동을 동시에 학습할 경우를 유도성 분석을 진행한다. 또한 유도성 특징 분석을 통해 나타난 결과를 바탕으로 BCI 패러다임을 제안한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.147-150
/
2008
사람과 컴퓨터의 인터페이스를 위한 방법에는 여러 가지가 있으나 보다 편리하고 몸이 불편한 사람들도 이용할 수 있도록 하기 위하여 최근에는 사람의 생체신호를 이용하여 Interface하기위한 연구가 활발히 진행되고 있다. 생체신호에는 뇌파, 근전도, 심전도, 등 여러 가지가 있지만 이를 위해 사용자의 가장 많은 정보를 내포하고 있는 뇌파에 대한 연구는 필수적이다. 따라서 세계 여러 나라에서 뇌파에 대한 연구가 진행되고 있지만 아직까지는 뇌파에 대한 정확한 분석이 이루어지지 못하고 있는 실정이다. 이를 위해 본 논문에서는 정확한 뇌파분석을 위한 뇌파 유발 자극 방법 및 측정법을 제안하고 사람이 몸을 움직이고자 하는 상상을 할 때 ERS(Event-Related Synchronization), ERD(Event-Related Desynchronization)를 분석함으로써 사람의 의도를 뇌파를 통해 분석하고자 한다.
Cancer patients have been suffered from the instability of mind/body and unbalanced homeostasis because of cancer progression and medical treatment such as chemotherapy, It is very important that appropriated actions can be promptly taken by monitoring cancer patients' mental conditions. For this reason, it is crucial to develop a monitoring method which is convenient and not harmful to their body. Brain-computer-interface(BCI) system is introduced for the purpose in this paper. Prefrontal brain waves of cancer patients and control groups have been measured by a portable neurofeedback(NF) system based on self-regulation of the human electroencephalogram(EEG). The NF system consists of the portable EEG amplifier and a headband with dry electrodes placed on Fp1 and Fp2 sites. Patterns of the prefrontal brain waves taken by computer are correlated to brain quotients by EEG-analysis program. Basic rhythm quotient, attention quotient, emotional quotient, anti-stress quotient and correlation quotient of control group have shown high significant level compared with the cancer patients group. On the other hand, the EEG patterns analysis is shown its possibility to be an important methodology of monitoring cancer patients' condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.