• Title/Summary/Keyword: brain T2 weighted image

Search Result 88, Processing Time 0.029 seconds

Optimal Flip Angle for T2-Weighted Effect in Micro 4.7T MRI SE Sequence (마이크로 4.7T MRI SE Sequence에서 T2강조효과를 위한 최적의 Flip Angle)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.113-117
    • /
    • 2019
  • The purpose of this study was to investigate the FA value which can produce the best T2-weighted images by measuring the signal intensity and noise according to the FA value change in the brain image and the abdominal image of the mouse using micro-MRI. Brain imaging and abdominal imaging of BALB / C mice weighing 20g were performed using 4.7T (Bruker BioSpin MRI GmbH) micro-MRI equipment, Turbo RARE-T2 (spin echo-T2) images were scanned at TR 3500 msec and TE 36 msec. The changes of the FA values were $60^{\circ}$, $80^{\circ}$, $100^{\circ}$, $120^{\circ}$, $140^{\circ}$, $160^{\circ}$ and $180^{\circ}$. We measured signal intensity according to FA values of ventricle and thalamus in brain imaging, The signal intensity of kidney and muscle around the kidney was measured in abdominal images. To obtain SNR and CNR, we measured the background signals of two different parts, not the tissue. In the brain (thalamus) image, the signal intensity of FA $100^{\circ}$ was 7,433 and SNR (6.49) was the highest. In the abdominal (kidney) image, the signal intensity was highest at 16,523 when FA was $120^{\circ}$, and the highest SNR was 8.54 when FA was $140^{\circ}$. The CNR value of the brain image was 1.38 at FA $60^{\circ}$ and gradually increased to 8.29 at FA $180^{\circ}$. The CNR value of the muscle adjacent to the kidney gradually increased from 2.36 when the FA value was $60^{\circ}$ and the highest value was 4,57 at the FA value $180^{\circ}$.

Associated Brain Parenchymal Abnormalities in Developmental Venous Anomalies: Evaluation with Susceptibility-weighted MR Imaging

  • Ryu, Hyeon Gyu;Choi, Dae Seob;Cho, Soo Bueum;Shin, Hwa Seon;Choi, Ho Cheol;Jeong, Boseul;Seo, Hyemin;Cho, Jae Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the associated brain parenchymal abnormalities of developmental venous anomalies (DVA) with susceptibility-weighted image (SWI). Materials and Methods: Between January 2012 and June 2013, 2356 patients underwent brain MR examinations with contrast enhancement. We retrospectively reviewed their MR examinations and data were collected as per the following criteria: incidence, locations, and associated parenchymal signal abnormalities of DVAs on T2-weighted image, fluid-attenuated inversion recovery (FLAIR), and SWI. Contrast enhanced T1-weighted image was used to diagnose DVA. Results: Of the 2356 patients examined, 57 DVAs were detected in 57 patients (2.4%); 47 (82.4%) were in either lobe of the supratentorial brain, 9 (15.7%) were in the cerebellum, and 1 (1.7%) was in the pons. Of the 57 DVAs identified, 20 (35.1%) had associated parenchymal abnormalities in the drainage area. Among the 20 DVAs which had associated parenchymal abnormalities, 13 showed hemorrhagic foci on SWI, and 7 demonstrated only increased parenchymal signal abnormalities on T2-weighted and FLAIR images. In 5 of the 13 patients (38.5%) who had hemorrhagic foci, the hemorrhagic lesions were demonstrated only on SWI. Conclusion: The overall incidence of DVAs was 2.4%. Parenchymal abnormalities were associated with DVAs in 35.1% of the cases. On SWI, hemorrhage was detected in 22.8% of DVAs. Thus, we conclude that SWI might give a potential for understanding of the pathophysiology of parenchymal abnormalities in DVAs.

MAGNETIC RESONANCE IMAGING APPEARANCE OF EPIDURAL HEMATOMA IN DOG (개의 경막외 혈종의 자기공명영상학적 진단)

  • Choi, Chi-Bong;Kim, Hwi-Yool;Kim, Su-Gwan;Bae, Chun-Sik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.488-491
    • /
    • 2005
  • A 3-year-old female, 5kg, Shih-tzu developed an acute onset of depression, disorientation, hypersalivation, nystagmus after falling down 2 meter height place. In plain skull radiography, there was fracture line in the frontal and parietal bones and next day magnetic resonance imaging examination was performed. Magnetic resonance imaging of the brain was performed with 3.0 Tesla unit. Under general anesthesia, the dog was placed in prone with its head positioned in a birdcage coil. Transverse, sagittal and coronal fast spin echo images of the brain were obtained with the following pulse sequences: T1 weighted images (TR = 560 ms and TE = 18.6 ms) and T2 weighted images (TR = 3500 ms and TE = 80 ms). Magnetic resonance imaging showed epidural hematoma in the left frontal area resulting in compression of the adjacent brain parenchyma. Left lateral ventricle was compressed secondarily and the longitudinal fissure shifted to the right, representing mass effect. The lesion was iso-to slightly hyperintense on T1 weighted image and iso-slightly hypointense signal on T2 weighted image. At necropsy, there was a skull fracture and epidural hematoma in the left frontal area. Magnetic resonance imaging of epidural hematoma is reviewed.

Arachnoid Granulations Mimicking Multiple Osteolytic Bone Lesions in the Occipital Bone

  • Park, Seong-Hyun;Park, Ki-Su;Hwang, Jeong-Hyun
    • Brain Tumor Research and Treatment
    • /
    • v.6 no.2
    • /
    • pp.68-72
    • /
    • 2018
  • We report a rare case of arachnoid granulations mimicking multiple osteolytic bone lesions. A 66-year-old woman was admitted to a local clinic for a regular checkup. Upon admission, brain CT showed multiple osteolytic lesions in the occipital bone. These needed to be differentiated from multiple osteolytic bone tumor. Subsequent brain MRI revealed that the osteolytic lesions were isointense to cerebrospinal fluid, hyperintense on T2-weighted image, hypointense on T1-weighted image, and with subtle capsules around the osteolytic lesions that were visible after gadolinium injection. A bone scan revealed no radiotracer uptake. The lesions were in both the transverse sinuses and the torcular herophili. With typical radiological appearances of the lesions, the osteolytic lesions were diagnosed as multiple arachnoid granulations. No further treatment was planned. A 1-year follow-up brain CT scan revealed no change. We should consider the possibility of arachnoid granulations when multiple osteolytic lesions are observed in the occipital bone.

Automatic Brain Segmentation for 3D Visualization and Analysis of MR Image Sets (MR영상의 3차원 가시화 및 분석을 위한 뇌영역의 자동 분할)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.542-551
    • /
    • 2000
  • In this paper, a novel technique is presented for automatic brain region segmentation in single channel MR image data sets for 3D visualization and analysis. The method detects brain contours in 2D and 3D processing of four steps. The first and the second make a head mask and an initial brain mask by automatic thresholding using a curve fitting technique. The stage 3 reconstructs 3D volume of the initial brain mask by cubic interpolation and generates an intermediate brain mask using morphological operation and labeling of connected components. In the final step, the brain mask is refined by automatic thresholding using curve fitting. This algorithm is useful for fully automatic brain region segmentation of T1-weighted, T2-weighted, PD-weighted, SPGR MRI data sets without considering slice direction and covering a whole volume of a brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 in comparison with manual drawing in similarity index.

  • PDF

A Study on Comparative Analysis of Diffusion Weighted Image Examination before and after Contrast Injection (조영제 사용 전 후 확산강조영상 검사의 비교 분석에 대한 연구)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • The purpose of this study would evaluate if having clinical effects on diffusion image with quantitative analysis through ADC values of brain's normal tissue and lesions before and after contrast injections using a 3.0T. From November in 2007 until December in 2008, a total of 32 patient was performed on 3.0T(Signa Excite, GE Medical System, USA) with the normal or lesions in the patient who requests diffusion weighted image with 8channel head coil. The pulse sequence was used with spin echo EPI(TR: 10000msec, TE: 72.2 msec, Matrix: 128*128, FOV: 240 mm, NEX: 1, diffusion direction: 3, b-value: 1000). Measurement results of ADC values on lesions, CSF, white matter, gray matter, lesions after contrast injection were measured less 75% than before contrast injection, infarction: 100%, CSF: 78%(high), white matter: 71.4%(low), gray matter: 50%(high, low). The results of paired t-test on the deference of ADC values which statically is significant in three(lesions, CSF, white matter)regions except for white matter(p<0.05). Quantitative analysis of lesions, CSF, white matter, gray matter have difference on all regions. ADC values were low in lesions and white matter, normal CSF after contrast injection commonly is high than before contrast injection, ADC values which white matter were high and low (50:50) after contrast injection. 3.0T diffusion weighted image clinically supposed that performing DWI examination after contrast injection was not desirable because of having effects on brain tissue.

  • PDF

Cystic Hemangiopericytoma in the Third Ventricle

  • Sim, Jong-Eun;Jeong, Jin-Sook;Choi, Sun-Seob;Choi, Young-Min;Kim, Ki-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.6
    • /
    • pp.467-470
    • /
    • 2006
  • Primary intracranial hemangiopericytoma is rare and resemble meningioma on imaging study. It shows meningeal attachment, and is usually isointense with gray matter on T1-weighted MR image with heterogeneous enhancement and prominent vascular flow voids on T2-weighted image. Cystic type of hemangiopericytoma is very rare and only 3 cases have been reported in the literature which arised in the middle fossa, cerebellum, and occipital area. Ventricular hemangiopericytomas were reported in 9 cases, and all of them were solid type. Authors experienced a peculiar case of cystic hemangiopericytoma in the 3rd ventricle and report it with review of the literature.

Cerebral Infarction Model in Rat on Magnetic Resonance Imaging (흰 쥐의 뇌경색 병변에 대한 자기공명영상)

  • Jung, Ji-Sung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.55-58
    • /
    • 2011
  • It is important to study using experimental animals for research about stroke. Magnetic Resonance Imaging(MRI) is avaluable diagnosticmethods for stroke diagnosis. The purpose of this research is to know the Magnetic Resonance Imaging(MRI) and histopathological characteristics findings after induction of photothrombotic cerebral infarction in rat brain. Male Sprague-Dawley rats were anesthetized, Rose Bengal dye(20 mg/kg) was intravenously injected. The right sensonrimotor cortex of rat brain was exposed to cold light of 7 mm diameter at a position of 1 mm anterior and 3.5 mm lateral to bregma for 20 min. The post-infarction effects were monitored by T1 weighted and T2 weighted images of brain MRI. Histopathological changes were observed after Hematoxylin & Eosin staining. The lesion appeared clearly high signal intensity area on T2 weighted images(the major axis $7.04{\pm}0.11$ mm, the minor axis $3.08{\pm}0.04$ mm) and also H&E staining was same result. In conclusion, MRI was avaluable diagnostic methods for diagnosis and serial changes of stroke.

  • PDF

Engraftment of Human Mesenchymal Stem Cells in a Rat Photothrombotic Cerebral Infarction Model : Comparison of Intra-Arterial and Intravenous Infusion Using MRI and Histological Analysis

  • Byun, Jun Soo;Kwak, Byung Kook;Kim, Jae Kyun;Jung, Jisung;Ha, Bon Chul;Park, Serah
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.467-476
    • /
    • 2013
  • Objective : This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods : Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), $T2^*$ weighted image ($T2^*WI$), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results : Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by $T2^*WI$ and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion : In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF