• Title/Summary/Keyword: bracket bond strength

Search Result 96, Processing Time 0.022 seconds

Change of shear bond strength of orthodontic brackets according to surface treatment on dental gold alloy (치과용 금합금의 표면처리에 따른 교정용 브라켓의 전단결합강도 변화)

  • Min, Ji-Hyun;Hwang, Hyeon-Shik;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.483-490
    • /
    • 2000
  • The dental gold alloy shows a lower bond strength than the natural teeth in bracket bonding, and this can be a possible source of subsequent bond failure. This study aims to evaluate the effect of various gold alloy surface treatment techniques on shear bond strength between the orthodontic adhesives and the gold alloy and to find ways of increasing the bond strength. Two hundred and forty specimens made of the dental fold alloy were divided into twelve groups based on the combination of surface treatment methods(non-surface treatment, sandblasted, sandblasted plus tin-plated, and sandblasted plus intermediate adhesive) and adhesive systems (Ortho-one, Panavia 21, Superbond C&B). The specimens with bonded brackets were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength was measured by a universal testing machine. The results were as follows: 1. All surface-treated groups showed a significantly higher shear bond strength than non-surface-treated groups. 2. The sandblasted plus tin-plated group showed a significantly higher shear bond strength than the sandblasted group only when Panavia 21 was involved. 3. The sandblasted plus intermediate adhesive group showed a significantly higher shear bond strength than sandblasted group regardless of the type of adhesive used. 4. Of the three resin adhesive types, the Superbond C&B showed the highest bond strength, followed by Panavia 21 and Ortho-one. These findings suggest that a combination of sandblasting and intermediate resin treatment is desirable in order to enhance bracket bond strength regardless of adhesive types.

  • PDF

The Effect of Surface Treat`ment on Bond Strength of Polycarbonate Bracket (폴리카보네이트 브라켓 부착 시 결합강도 증진을 위한 표면처리 효과)

  • Kim, Seok-Pil;Kim, Nyeon-Kyeong;Lee, Hyun-Jung;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2006
  • Objective: The purpose of this study was to evaluate whether the bond strength of polycarbonate brackets can be increased through surface treatment. Methods: One hundred polycarbonate brackets (Alice) were bonded to bovine incisors with light-cured adhesive. The bracket bases were treated with one of three methods; sandblasting, plastic conditioner application, and combined treatment with sandblasting and plastic conditioner. The brackets without any suraace treatment served as the control. The shear bond strength was tested with a universal testing machine, and failure pattern was assessed with the adhesive remnant index. Results: The shear bond strength in all experimental groups was higher than that of the control group (p < 0.001). The group treated with plastic conditioner after sandblasting showed statistically higher shear bond strength than the sandblasting only group to (p < 0.05). The group treated with plastic conditioner after sandblasting showed higher shear bond strength than plastic conditioner only group, but the difference was not statistically significant. Conclusion: The above results suggest that the surface treatments of polycarbonate bracket is mandatory to improve bond strength, and the most effective method is an application of plastic conditioner after sandblasting.

Effect of metal primer and thermocycling on shear bonding strength between the orthodontic bracket and gold alloy (치과용 금합금에 대한 금속 프라이머 처리와 열순환 처리가 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Lee, Young-Kee;Cha, Jung-Yul;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.320-329
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the effect of metal primers and thermocycling on shear bond strength between the orthodontic bracket and gold alloy. Methods: For this study, 80 specimens made of dental gold alloy were divided into 8 groups based on the combination of metal primers (none, Alloy primer, Metaltite, V-primer) and thermocycling (with and without thermocycling). Shear bond strength testing was performed with a universal testing machine. Bond failure sites were classified by a modified ARI (Adhesive Remnant Index) score. Results: All metal primer treated groups showed a significantly higher shear bond strength than the only sandblasting treated group without thermocycling (p < 0.05). There were no significant differences on shear bond strength in the groups with thermocycling (p > 0.05). Bond failure sites of the metal primer treated group without thermocycling occurred at gold alloy/adhesive interface, whereas there were no differences on bonding failure sites in the groups with thermocycling. Conclusions: These findings suggest that using metal primer on gold alloy enhances the initial bracket bond strength. But, this effect was not shown with thermocycling.

Effect of silica coating on bond strength between a gold alloy and metal bracket bonded with chemically cured resin

  • Ryu, Min-Ju;Gang, Sung-Nam;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.44 no.3
    • /
    • pp.105-112
    • /
    • 2014
  • Objective: The purpose of this study was to evaluate the effects of three different surface conditioning methods on the shear bond strength (SBS) of metal brackets bonded directly to gold alloy with chemically cured resin. Methods: Two hundred ten type III gold alloy specimens were randomly divided into six groups according to the combination of three different surface conditioning methods (aluminum oxide sandblasting only, application of a metal primer after aluminum oxide sandblasting, silica coating and silanation) and thermocycling (with thermocycling, without thermocycling). After performing surface conditioning of specimens in accordance with each experimental condition, metal brackets were bonded to all specimens using a chemically cured resin. The SBS was measured at the moment of bracket debonding, and the resin remnants on the specimen surface were evaluated using the adhesive remnant index. Results: Application of metal primer after aluminum oxide sandblasting yielded a higher bond strength than that with aluminum oxide sandblasting alone (p < 0.001), and silica coating and silanation yielded a higher bond strength than that with metal primer after aluminum oxide sandblasting (p < 0.001). There was no significant change in SBS after thermocycling in all groups. Conclusions: With silica coating and silanation, clinically satisfactory bond strength can be attained when metal brackets are directly bonded to gold alloys using a chemically cured resin.

Shear bond strength of rebonded ceramic brackets (세라믹 브라켓의 재접착이 전단 결합 강도에 미치는 영향)

  • Sung, Ji-Young;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.234-247
    • /
    • 2009
  • Objective: The purpose of this study was to evaluate the shear bond strength of rebonded ceramic brackets according to each condition and find an appropriate method to rebond ceramic brackets with proper shear bond strength in clinical practice. Methods: The study consisted of 12 experimental groups, according to the types of brackets, debonding methods, and treatment methods of the bracket base. Shear bond strength was measured, and adhesive residues left on the tooth surface were assessed. The base of the bracket was examined under scanning electron microscopy. Results: The shear bond strength of the monocrystalline ceramic bracket group was significantly higher than thatof the polycrystalline bracket group with only sandblasting (p < 0.05). There was no significant difference in shear bond strength between groups that used rebonded brackets which were debonded with shear force and debonded with laser (p > 0.05). The shear bond strength of the sandblasted/silane group was significantly higher than that of the selectively grinded group with a low-speed round bur and the sandblasted only group (p < 0.001). The retentive structure was more presented in groups where laser was applied than in groups where shear force was applied to debond brackets prior to rebonding. The bracket bases which were treated before rebonding presented smoother surfaces than new brackets. Conclusions: Shear bond strength could be increased by applying a silane coupling agent after sandblasting before rebonding. Also, the bond strength of the selectively grinded group with a low-speed round bur and the sandblasted group showed acceptable bond strength for clinical orthodontic treatment.

Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives

  • Goracci, Cecilia;Ozcan, Mutlu;Franchi, Lorenzo;Di Bello, Giuseppe;Louca, Chris;Vichi, Alessandro
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.404-412
    • /
    • 2019
  • Objective: To assess shear bond strength and failure mode (Adhesive Remnant Index, ARI) of orthodontic brackets bonded to polymethylmethacrylate (PMMA) blocks for computer-aided design/manufacture (CAD/CAM) fabrication of temporary restorations, following substrate chemical or mechanical treatment. Methods: Two types of PMMA blocks were tested: $CAD-Temp^{(R)}$ (VITA) and $Telio^{(R)}$ CAD (Ivoclar-Vivadent). The substrate was roughened with 320-grit sandpaper, simulating a fine-grit diamond bur. Two universal adhesives, Scotchbond Universal Adhesive (SU) and Assure Plus (AP), and a conventional adhesive, Transbond XT Primer (XTP; control), were used in combination with Transbond XT Paste to bond the brackets. Six experimental groups were formed: (1) $CAD-Temp^{(R)}/SU$; (2) $CAD-Temp^{(R)}/AP$; (3) $CAD-Temp^{(R)}/XTP$; (4) $Telio^{(R)}$ CAD/SU; (5) $Telio^{(R)}$ CAD/AP; (6) $Telio^{(R)}$ CAD/XTP. Shear bond strength and ARI were assessed. On 1 extra block for each PMMA-based material surfaces were roughened with 180-grit sandpaper, simulating a normal/medium-grit ($100{\mu}m$) diamond bur, and brackets were bonded. Shear bond strengths and ARI scores were compared with those of groups 3, 6. Results: On $CAD-Temp^{(R)}$ significantly higher bracket bond strengths than on $Telio^{(R)}$ CAD were recorded. With XTP significantly lower levels of adhesion were reached than using SU or AP. Roughening with a coarser bur resulted in a significant increase in adhesion. Conclusions: Bracket bonding to CAD/CAM PMMA can be promoted by grinding the substrate with a normal/medium-grit bur or by coating the intact surface with universal adhesives. With appropriate pretreatments, bracket adhesion to CAD/CAM PMMA temporary restorations can be enhanced to clinically satisfactory levels.

SHEAR BOND STRENGTH AND FAILURE PATTERNS ACCORDING TO THE THICKNESS OF RESIN BASE IN BRACKET BONDING (브라켓 부착시 레진 베이스의 두께에 따른 전단결합강도와 파절양상에 관한 연구)

  • Kim, Jae-Hyuk;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.28 no.4 s.69
    • /
    • pp.659-668
    • /
    • 1998
  • The purpose of this study was to evaluate the possibility of the decrease of bond strength due to increased thickness of resin base in indirect bracket bonding technique. Metal brackets were bonded to the resin blocks involving bovine lower incisors and the thickness of resin bases was increased by increments of 0.5 mm from 0.0 mm to 2.0 mm. They were divided into two groups, one group is that the thickness of resin base was increased but the loading point from the tooth surface was maintained constantly, the other group is that the loading point from the tooth surface and the resin base thickness were increased concomitantly. The shear bond strength was tested on universal testing machine and the failure patterns were assessed with the adhesive remnant index(ARI). The results were as follows: 1. When the distance from the tooth surface to the loading point was maintained constantly, shear bond strength was increased significantly according to the decrease of distance from the bracket base to the loading point and the increase of resin base thickness. 2. When the distance from the tooth surface to the loading point and the resin base thickness were increased concomitantly, shear bond strength was decreased according to the increase of resin base thickness but significant differences were ignorable. 3. There were no significant differences in ARI scores according to the change in the thickness of resin base. The results of the present study indicated that shear bond strength was not much affected by the thickness of resin base, whereas was decreased according to the increase of distance from bracket base to the loading point.

  • PDF

A STUDY OF BONDING STRENGTH AND CHANGE OF BRACKET SLOT WIDTH OF CHEMICALLY RECYCLED METAL BRACKETS (화학적(化學的)으로 재생(再生)된 금속(金屬) bracket의 접착(接着) 강도(强度)와 slot폭경(幅徑) 변화(變化)에 관(關)한 연구(硏究))

  • Ko, Young-Sam;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.283-291
    • /
    • 1990
  • The purpose of this study was to measure and compare tensile and shear strength for 4 types of new direct-bonding brackets and same brackets after recycling and to evaluate the change of bracket slot width after recycling. Four types of new direct-bond brackets were bonded to recently extracted human premolar teeth and the tensile and shear strength was measured by Universal Testing Machine. The brackets were recycled by chemical process and the tensile and shear test was repeated. To evaluate the change of the bracket slot width, slot width was measured by the Topcon Universal Measuring Microscope before and after recycling. Following results were obtained: 1. There was no satistically significant difference between the tensile and shear strength of recycled brackets and those of new brackets. 2. In both new and recycled brackets, the tensile and shear strength of perforated base bracket was lower than those of photoetched, foilmesh and contou-lok mesh base brackets. (P<0.01) 3. There was no statistically significant difference in bonding strengths of control group bonded only once and two times. 4. There was no statistically significant difference in the change of the bracket slow width after recycling process. 5. Of the failure, the combination type (58%) in the tensile strength and the tooth adhesive interface (65%) in the shear strength was the most common type.

  • PDF

EFFECTS OF CHEMICALLY CURED RESIN AND LIGHT CURED RESIN ON SHEAR BOND STRENGTH OF METAL BRACKET AND CERAMIC BRACKET (화학중합형 및 광중합형 레진접착제가 금속 및 도재브라켓의 전단결합강도에 미치는 영향)

  • Yoon, Duk-Sang;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.125-134
    • /
    • 1994
  • This study was designed for comparison of shear bond strengths and failure patterns of four experimental groups which combinated mesh-backed metal brackets and texture based ceramic brackets (Transcend series $2000^{(TM)}$) with chemically cured resin (Mono $Lok2^{(TM)}$) and visible light cured resin $(Transbond^{(TM)})$. Brackets were bonded on the extracted human bicuspids, after etching them by manufacturer's recommand, and the shear bond strengths were measured on the Instron machine after 24 hrs passed in the $37^{\circ}C$ water bath. The results were as follows. 1. Ceramic brackets, transcend series $2000^{(TM)}$, bonded with $MonoLok2^{(TM)}$ showed statistically higher shear bond strength than mesh-backed metal brackets bonded with $MonoLok2^{(TM)}$. 2. There was no significant difference in shear bond strengths between metal and ceramic brackets bonded with $(Transbond^{(TM)})$. 3. Ceramic brackets bonded with both $(Transbond^{(TM)})$) and $MonoLok2^{(TM)}$ showed primarily fractures between brackets adhesive interface. 4. Enamel crack was not found in anyone specimen.

  • PDF

An in vitro study of a few crystal growth solutions on the bracket shear bond strength (수종의 실험 결정형성용액에 의한 브라켓 전단결합강도의 비교)

  • Jeon, Yun-Ok;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.613-625
    • /
    • 1999
  • The purpose of this study was to compare the bracket shear bond strengths of the crystal growth solutions with those of the $37\%$ phosphric acid etch technique. The 4 crystal growth solutions were made experimentally in the lab, that is, (1) $30\%$ polyacrylic acid solution containing 0.3 M sulfuric acid (ES 1), (2) $30\%$ polyacrylic acid solution containing 0.6M sulfuric acid (ES 2), (3) $30\%$ polyacrylic acid solution containing 0.3 M sulfuric acid and 0.6 M lithium sulfate(ES 3), and (4) $30\%$ polyacrlic acid solution containing 0.3 M sulfuric acid and $5\%$ phosphoric acid(ES4). The $37\%$ phosphoric acid solution used as a control. Bovine lower incisor tooth enamel was treated by the above solutions for 60 sec, washed out for 20 sec with slow water stream, and bonded lower anterior edgewise bracket with the light curing orthodontic composite resin adhesives. The teeth bonded brackets were stored in the distilled water at room temperature for 24 h, and followed to test the bracket shear bond strength. The acid etch technque showed 177.6 kg/$cm^2$ of mean shear bond strength which was the highest among the enamel treatment solutions. ES 1 shown 58.4 kg/$cm^2$ of mean shear bond strength and that of ES 4 showed 66.5 kg/$cm^2$. There was no significant difference between the two(p>0.05). ES2 showed 110.6kg/$cm^2$ of mean shear bond strength which was $62.3\%$ of that of acid etch technique. ES 3 showed 131.1 kg/$cm^2$ of mean shear bond strength which was the highest among experimental crystal growth solutions and which was $74\%$ of that of acid etch technique. The shear bond strengths of the crystal growth solutions were significantly lower that that of acid etch technique(p<0.05). The results sugest that although bracket shear bond strength of $30\%$ polyacrylic acid solution containing 0.3M sulfuric acid and 0.6 M lithium sulfate were showed the highest, it is low for the clinical application of this solution.

  • PDF