• Title/Summary/Keyword: bracing configurations

Search Result 9, Processing Time 0.019 seconds

Effective number of mega-bracing, in order to minimize shear lag

  • Zahiri-Hashemi, Rouzbeh;Kheyroddin, Ali;Farhadi, Basir
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.173-193
    • /
    • 2013
  • In this paper, influence of geometric configurations of multi-story bracing on shear lag behaviour of braced tube structures is investigated. The shear lag of 24-, 36- and 72-story braced tube structures are assessed considering all possible configurations of overall X and Chevron bracing types. Based on the analytical results, empirical equations, useful for the preliminary design phase, are proposed to provide the optimum number of stories that braced, in order to exert minimum shear lag on structures. Studying the interaction behaviour of a tube and different bracing types along with paying attention to the shear lag behaviour, a better explanation about the reasons behind the efficiency of a specific bracing module in decreasing the shear lag is developed. The analytical results show that there are distinct differences between the anatomy of braced tube structures with X and Chevron bracing regarding the shear lag behaviour.

Static and dynamic analysis of guyed steel lattice towers

  • Meshmesha, Hussam M.;Kennedy, John B.;Sennah, Khaled;Moradi, Saber
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.567-577
    • /
    • 2019
  • Guyed steel lattice towers (or guyed masts) are widely used for supporting antennas for telecommunications and broadcasting. This paper presents a numerical study on the static and dynamic response of guyed towers. Three-dimensional nonlinear finite-element models are used to simulate the response. Through performing static pushover analyses and free-vibration (modal) analyses, the effect of different bracing configurations is investigated. In addition, seismic analyses are performed on towers of different heights to study the influence of earthquake excitation time-lag (or the earthquake travel distance between tower anchors) and antenna weight on the seismic response of guyed towers. The results show that the inclusion of time lag in the seismic analysis of guyed towers can influence shear and moment distribution along the height of the mast. Moreover, it is found that the lateral response is insensitive to bracing configurations. The results also show that, depending on the mast height, an increased antenna weight can reduce the tower maximum base shear while other response quantities, such as cables tension force are found to be insensitive to variation in the antenna weight.

Modelling aspects of the seismic response of steel concentric braced frames

  • D'Aniello, M.;La Manna Ambrosino, G.;Portioli, F.;Landolfo, R.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.539-566
    • /
    • 2013
  • This paper summarises the results of a numerical study on the non linear response of steel concentric braced frames under monotonic and cyclic loads, using force-based finite elements with section fibre discretisation. The first part of the study is addressed to analyse the single brace response. A parametric analysis was carried out and discussed to evaluate the accuracy of the model, examining the influence of the initial camber, the material modelling, the type of force-based element, the number of integration points and the number of fibers. The second part of the paper is concerned with the modelling issues of whole braced structures. The effectiveness of the modelling approach is verified against the nonlinear static and dynamic behaviour of different type of bracing configurations. The model sensitivity to brace-to-brace interaction and the capability of the model to mimic the response of complex bracing systems is analyzed. The influence of different approaches for modelling the inertia, the equivalent viscous damping and the brace hysteretic response on the overall structural response are also investigated. Finally, on the basis of the performed numerical study general modelling recommendations are proposed.

Simulation of experiments on RC frames strengthened with dissipative steel links

  • Georgiadi-Stefanidi, Kyriaki;Mistakidis, Euripidis;Stylianidis, Kosmas Athanasios
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.253-272
    • /
    • 2013
  • The use of steel bracing systems is a popular method for the strengthening of existing reinforced concrete (RC) frames and may lead to a substantial increase of both strength and stiffness. However, in most retrofitting cases, the main target is the increase of the energy dissipation capacity. This paper studies numerically the efficiency of a specific strengthening methodology which utilizes a steel link element having a cross-section of various shapes, connected to the RC frame through bracing elements. The energy is dissipated through the yielding of the steel link element. The case studied is a typical one bay, single-storey RC frame, constructed according to older code provisions, which is strengthened through two different types of link elements. The presented numerical models are based on tests which are simulated in order to gain a better insight of the behaviour of the strengthened structures, but also in order to study the effects of different configurations for the link element. The behaviour of the strengthened frames is studied with respect to the one of the original bare frame. Moreover, the numerically obtained results are compared to the experimentally obtained ones, in order to verify the effectiveness of the applied simulation methodology.

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca;Luis Calado;Alper Kanyilmaz
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.237-252
    • /
    • 2023
  • The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.

Response modification factor of the frames braced with reduced yielding segment BRB

  • Fanaie, Nader;Dizaj, Ebrahim Afsar
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • In this paper, overstrength, ductility and response modification factors are calculated for frames braced with a different type of buckling restrained braces, called reduced yielding segment BRB (Buckling Restrained Brace) in which the length of its yielding part is reduced and placed in one end of the brace element in comparison with conventional BRBs. Forthermore, these factors are calculated for ordinary BRBF and the results are compared. In this regard incremental dynamic analysis (IDA) method is used for studying 17 records of the most known earthquakes happened in the world. To do that, the considered buildings have different stories and two bracing configurations: diagonal and inverted V chevron, the most ordinary configurations of BRBFs. Static pushover analysis, nonlinear incremental dynamic analysis and linear dynamic analysis have been performed using OpenSees software. Considering the results, it can be seen that, overstrength, ductility and response modification factors of this type of BRBF(Buckling Restrained Braced Frame) is greater than those of conventional types and it shows better seismic performance and also eliminates some of conventional BRBF's disadvantages such as low post-yield stiffness.

Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.511-539
    • /
    • 2015
  • The main objective of this study is to analytically investigate the effectiveness of different strengthening solutions in upgrading the seismic performance of existing reinforced concrete (RC) buildings in Nepal. For this, four building models with different structural configurations and detailing were considered. Three possible rehabilitation solutions were studied, namely: (a) RC shear wall, (b) steel bracing, and (c) RC jacketing for all of the studied buildings. A numerical analysis was conducted with adaptive pushover and dynamic time history analysis. Seismic performance enhancement of the studied buildings was evaluated in terms of demand capacity ratio of the RC elements, capacity curve, inter-storey drift, energy dissipation capacity and moment curvature demand of the structures. Finally, the seismic safety assessment was performed based on standard drift limits, showing that retrofitting solutions significantly improved the seismic performance of existing buildings in Nepal.

Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)

  • Abdollahzadeh, Gholamreza;Banihashemi, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.621-636
    • /
    • 2013
  • Response modification factor is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake, in conformity with the point that many seismic design codes led to reduce the loads. In the present paper it's tried to evaluate the response modification factors of dual moment resistant frame with buckling restrained braced (BRB). Since, the response modification factor depends on ductility and overstrength; the nonlinear static analysis, nonlinear dynamic analysis and linear dynamic analysis have been done on building models including multi-floors and different brace configurations (chevron V, invert V, diagonal and X bracing). The response modification factor for each of the BRBF dual systems has been determined separately, and the tentative value of 10.47 has been suggested for allowable stress design method. It is also included that the ductility, overstrength and response modification factors for all of the models were decreased when the height of the building was increased.

Enhancing the Seismic Performance of Multi-storey Buildings with a Modular Tied Braced Frame System with Added Energy Dissipating Devices

  • Tremblay, R.;Chen, L.;Tirca, L.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • The tied braced frame (TBF) system was developed to achieve uniform seismic inelastic demand along the height of multi-storey eccentrically braced steel frames. A modular tied braced frame (M-TBF) configuration has been recently proposed to reach the same objective while reducing the large axial force demand imposed on the vertical tie members connecting the link beams together in TBFs. M-TBFs may however experience variations in storey drifts at levels where the ties have been removed to form the modules. In this paper, the possibility of reducing the discontinuity in displacement response of a 16-storey M-TBF structure by introducing energy dissipating (ED) devices between the modules is examined. Two M-TBF configurations are investigated: an M-TBF with two 8-storey modules and an M-TBF with four 4-storey modules. Three types of ED devices are studied: friction dampers (FD), buckling restrained bracing (BRB) members and self-centering energy dissipative (SCED) members. The ED devices were sized such that no additional force demand was imposed on the discontinuous tie members. Nonlinear response history analysis showed that all three ED systems can be used to reduce discontinuities in storey drifts of M-TBFs. The BRB members experienced the smallest peak deformations whereas minimum residual deformations were obtained with the SCED devices.