• 제목/요약/키워드: brachytherapy

검색결과 241건 처리시간 0.023초

Calibration of $^{192}Ir$ HDR Brachytherapy Source in Air and in a Cylindrical Phantom

  • Djarwani S. Soejoko;I, Arief-Riva'
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.23-27
    • /
    • 2002
  • Two $^{192}$ Ir HDR brachytherapy sources were calibrated with a Farmer ionization chamber in air method and in a PMMA cylindrical phantom. The calibration air method used ionization chamber with buildup cap, and 8 variation distances for center-to-center of the source to chamber. In the optimum distance the measured activity, especially for the high activity source, deviation was 0.3% from the activity provided by manufacturer. Calibration with a PMMA cylindrical phantom was less sensitive, and suitable for quick check method with accuracy less than 10%.

  • PDF

근접 치료 계산을 위한 3차원 치료계획 (3-Dimensional Dose Planning for Brachytherapy)

  • 조병철;최동락;추성실
    • 한국의학물리학회지:의학물리
    • /
    • 제3권1호
    • /
    • pp.35-44
    • /
    • 1992
  • 치료 계획에 필요한 선량분포의 2차원 및 3차원 그래픽 알고리즘을 개발하여 근접 치료 계획에 적용하였다. 상의 전개는 먼저, 원하는 선량치에 대한 등선량 입체 곡면을 그물망 형태(wire frame)로 전시하고 이를 임의의 방향에서 관찰할 수 있도록 회전 가능하게 하였다. 또한, 주요 세방향의 임의 단면에 대한 등선량 분포 곡선들을 전시 가능케 하므로써 전체적인 선량 분포에 대한 이해를 도왔다. 그 결과, 보다 확실하게 근접 치료시의 공간적인 선량분포를 이해할 수 있었다.

  • PDF

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

Management for locally advanced cervical cancer: new trends and controversial issues

  • Cho, Oyeon;Chun, Mison
    • Radiation Oncology Journal
    • /
    • 제36권4호
    • /
    • pp.254-264
    • /
    • 2018
  • This article reviewed new trends and controversial issues, including the intensification of chemotherapy and recent brachytherapy (BT) advances, and also reviewed recent consensuses from different societies on the management of locally advanced cervical cancer (LACC). Intensive chemotherapy during and after radiation therapy (RT) was not recommended as a standard treatment due to severe toxicities reported by several studies. The use of positron emission tomography-computed tomography (PET-CT) and magnetic resonance imaging (MRI) for pelvic RT planning has increased the clinical utilization of intensity-modulated radiation therapy (IMRT) for the evaluation of pelvic lymph node metastasis and pelvic bone marrow. Recent RT techniques for LACC patients mainly aim to minimize toxicities by sparing the normal bladder and rectum tissues and shortening the overall treatment time by administering a simultaneous integrated boost for metastatic pelvic lymph node in pelvic IMRT followed by MRI-based image guided adaptive BT.

Validation of electromagnetic physics models and electron range in Geant4 Brachytherapy application

  • A. Albqoor ;E. Ababneh ;S. Okoor;I. Zahran
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.229-237
    • /
    • 2023
  • The mechanics underlying photon and electron interactions was validated using our developed Brachytherapy computer code for high Dose Rate (HDR). By comparing the photon cross-section utilizing multiple physics libraries in the developed code, the results were benchmarked against experimental and theoretical findings. Klein-Nishina and experimental cross-section results were in good agreement with the Livermore library results. For two therapeutically relevant materials, the first scattered electron range was measured within 1 mm and 2 mm, which has significant implications for the interpretation of the kernel dose spikes observed in previous research.