• Title/Summary/Keyword: brace

Search Result 441, Processing Time 0.02 seconds

Analysis of Long Term Stress and Fatigue of Semi-Submersible Drilling Platform (반잠수식 시추선의 피로 해석 연구)

  • Yu, Byung-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.106-115
    • /
    • 1988
  • 반잠수식 시추선의 설계에 있어서 구조의 피로수명을 정확하게 추정하는 것은 매우 중요하며, 또한 어려운 일이다. 본 논문에서는 이미 실용화된 Aker H-3모델에 대하여 Palmgren-Miner 가정에 의하여 시추선의 hot-point인 수평 및 수직 K-brace 멤버에 대하여 피로수명을 로이드 선급의 커브에 따라 계산한 결과 북해의 해성환경 조건에서는 16년 동안 계속 작업을 할 수 있다는 결론을 얻었으나 응력 집중계수 (SCF)를 선정하는데 불확실성으로 인하여 사용하는데 주위를 요한다.

  • PDF

A Study on the Stability of Rope Guying of Tower Cranes. (타워크레인 로프가잉 안정성 검토에 관한 연구)

  • Lee, Won-Suk;Ho, Jong-Kwan;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.247-252
    • /
    • 2009
  • With the increasing use of tower cranes higher than free standing height, the importance of lateral support is also growing. Since the fall of 43 tower cranes hit by the last typhoon 'Mami' in 2003, regulations and concerns about safety of construction equipment have increased and construction laws regarding lateral support have been strengthened. In Korea, where there are many large-scale apartment housing construction works with the development of new towns, Rope Guying is a more economical construction method than Wall Brace which fixes building structure like building wall and slab. The safety of this Rope Guying is not verified and many construction works are still carried out based on the experience of site managers. There has been no case of construction work where frame and measurements are applied. The objective of this study is to examine the safety of Rope Guying method and ensure the effective implementation of equipment and prevention of disasters.

  • PDF

Behaviour of carbon fiber reinforced polymer strengthened tubular joints

  • Prashob, P.S.;Shashikala, A P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • This paper highlights the experimental and numerical investigations performed on a tubular T-joint fabricated from circular hollow sections under axial compressive loads applied at the brace. Tests were performed on a reference joint and the joint wrapped with Carbon Fiber Reinforced Polymer (CFRP). The Nitowrap EP carbon fiber with Nitowrap 410 resin serve as a composite material is used for wrapping the T-joint. Schematic diagram of the fabricated tubular joint for the experimental test setup, along with the experimental and numerical results are presented. After performing these experiments, it has been demonstrated that the joint wrapped with CFRP has a better strength and lesser deflection than a reference joint. Finite element analysis carried out in Ansys reveals that the results were in good correlation with the experimental values.

Effect of pre-stressed cable on pre-stressed mega-braced steel frame

  • Tang, Baijian;Zhang, Fuxing;Wang, Yi;Wang, Fei
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.327-341
    • /
    • 2016
  • This study addresses the effect of pre-stressed cables on a pre-stressed mega-braced steel frame through employing static analysis and pushover analysis. The performances of a pre-stressed mega-braced steel frame and a pure steel frame without mega-braces are compared in terms of base shear, ductility, and failure mode. The influence of the cable parameters is also analyzed. Numerical results show that cable braces can effectively improve the lateral stiffness of a pure frame. However, it reduces structural ductility and degenerates structural pre-failure lateral stiffness greatly. Furthermore, it is found that 20% fluctuation in the cable pretension has little effect on structural ultimate bearing capacity and lateral stiffness. As comparison, 20% fluctuation in the cable diameter has much greater impact.

Fatigue Fracture Behaviour of Hollow Section Joints

  • Lichun Bian;Lim, Jae-Kyoo
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.281-284
    • /
    • 2001
  • Fatigue behaviour of eight different hollow section T-joints was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chords (CRHS). Hot spot stresses and the stress concentration factors (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The experimental SCF values for CRHS joints were found to be between those of circular-to-circular (CCHS) and rectangular-to-rectangular (RRHS) hollow section joints. The fatigue strength referred to experimental hot spot stress was in reasonably good agreement with current fatigue design codes for tubular joints.

  • PDF

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

Pain Management with Extracorporeal Shockwave Treatment in Multiple Level Clay-shoveler's Fracture in a Novice Golfer: A Case Report

  • Seongho Woo;Kwangohk Jun;Hyoshin Eo;KooWon Mo;Sunyoung Joo;Donghwi Park;Chung Reen Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.6
    • /
    • pp.163-166
    • /
    • 2023
  • A 30-year-old male novice golfer was diagnosed with a clay-shoveler's fracture. During golf practice, he experienced persistent posterior neck and upper back pain for a month. Cervical radiographs and computed tomography revealed a series of sequential spinous process fractures from C7 to T3. The patient was prescribed analgesic medication and fitted with a cervical brace alongside extracorporeal shockwave therapy (ESWT) directed explicitly toward the upper back region, subsequently leading to a notable reduction in pain. Therefore, ESWT could be considered an additional method for pain management in patients with clay-shoveler's fractures.

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Development of Buckling Restrained Brace Laterally Supported by Semicircular Springs (반원형 스프링으로 횡지지된 건식형 좌굴방지가새의 개발)

  • Park, Keum Sung;Lee, Sang Sup;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.549-558
    • /
    • 2014
  • Buckling restrained braces(BRBs) developed as a seismic protection element, hysteretic damper, have been investigated in America and Japan mainly. BRBs are composed of a steel core and concrete-filled steel casing. It is one of the major causes of drop in productivity to fill the steel casing with concrete. To improve this problem, the BRB is introduced in which the steel core is restrained with a pair of semicircular springs. In this paper, the numerical and analytical investigation about the desirable configuration for a semicircular spring is presented. Firstly, the stiffness and strength of semicircular spring is determined theoretically to buckle into a very high-order modes. Then, the required stiffness and strength are calculated under the practical design conditions and considered as reference values to find a proper configuration. The material strength and thickness of semicircular spring are chose from the finite element analysis for 5 semicircular springs with varying height. Finally, the nonlinear buckling analysis of BRB with proper semicircular springs shows that the bucking strength of the whole BRB is very similar to the strength of steel core with length between semicircular springs.