• Title/Summary/Keyword: bphC

Search Result 56, Processing Time 0.02 seconds

Application and utilization of marker assisted selection for biotic stress resistance in hybrid rice (Oryza sativa L.)

  • Song, Jae-Young;Ouk, Sothea;Nogoy, Franz Marielle;Nino, Marjohn C.;Kwon, Soon Wook;Ha, Woongoo;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.317-331
    • /
    • 2016
  • Development of disease resistant plant is one of the important objectives in rice breeding programs because biotic stresses can adversely affect rice growth and yield losses. This study was conducted to identify lines with multiple-resistance genes to biotic stress among 173 hybrid rice breeding lines and germplasms using DNA-based markers. Our results showed that one hybrid rice line [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66)] possessed 5 bacterial blight resistance genes (Xa4, xa5, Xa7, Xa13 and Xa21) while two hybrid rice lines [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66) and 7292s (IR75589-31-27-8-33S(S1)/IR102758B)] possessed 3 bacterial blight resistance genes (Xa4, Xa7 and Xa21, and Xa3, Xa4 and xa5). Molecular survey on rice blast disease revealed that most of these lines had two different resistant genes. Only 11 lines possessed Pib, Pi-5, and Pi-ta. In addition, we further surveyed the distribution of insect resistant genes, such as Bph1, Bph18(t), and Wbph. Three hybrid breeding lines [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66), IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), and 7292s (IR75589-31-27-8-33S(S1) /IR102758B)] contained all three resistance genes. Finally, we obtained four hybrid rice breeding lines and germplasms [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), Damm-Noeub Khmau, 7290s, and 7292s (IR75589-31-27-8-33S(S1)/IR102758B)] possessing six-gene combination. They are expected to provide higher level of multiple resistance to biotic stress. This study is important for genotyping hybrid rice with resistance to diverse diseases and pests. Results obtained in this study suggest that identification of pyramided resistance genes is very important for screening hybrid rice breeding lines and germplasms accurately for disease and pest resistance. We will expand their cultivation safely through bioassays against diseases, pests, and disaster in its main export countries.

Molecular Characteristics of Pseudomonas rhodesiae Strain KK1 in Response to Phenanthrene

  • Kahng, Hyung-Yeel;Nam, Kyoung-Phile
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.729-734
    • /
    • 2002
  • Radiorespirometric analysis revealed that Pseudomonas sp. strain KKI isolated from a soil contaminated with petroleum hydrocarbons was able to catabolize polycyclic aromatic hydrocarbons such as phenanthrene and naphthalene. The rate and extent of phenanthrene mineralization was markedly enhanced when the cells were pregrown on either naphthalene or phenanthrene, compared to the cells grown on universal carbon sources (i.e., TSA medium). Deduced amino acid sequence of the Rieske-type iron-sulfur center of a putative phenanthrene dioxygenase (PhnAl) obtained from the strain KKI shared significant homology with DxnAl (dioxin dioxygenase) from Spingomonas sp. RW1, BphA1b (biphenyl dioxygenase) from Spingomonas aromaticivorans F199, and PhnAc (phenanthrene diokygenase) from Burkholderia sp. RP007 or Alcaligenes faecalis AFK2. Northern hybridization using the dioxygenase gene fragment cloned from KKI showed that the expression of the putative phn dioxygenase gene reached the highest level in cells grown in the minimal medium containing phenanthrene and $KNO_3$, and the expression of the phn gene was repressed in cells grown with glucose. In addition to the metabolic change, phospholipid ester-linked fatty acids (PLFA) analysis revealed that the total cellular fatty acid composition of KKI was significantly changed in response to phenanthrene. Fatty acids such as 14:0, 16:0 3OH, 17:0 cyclo, 18:1$\omega$7c, 19:0 cyclo increased in phenanthrene-exposed cells, while fatty acids such as 10:0 3OH, 12:0, 12:0 2OH, 12:0 3OH, 16:1$\omega$7c, 15:0 iso 2OH, 16:0, 18:1$\omega$6c, 18:0 decreased.

Occurrence Patterns of Three Planthopper Species in Rice Fields in Bangladesh, Cambodia, Thailand and Vietnam (방글라데시, 캄보디아, 태국, 베트남 벼 포장에서 멸구류 3종의 발생 양상)

  • Park, Bue-Yong;Lee, Sang-Ku;Park, Hong-Hyun;Jeon, Sung-Wook;Jeong, In-Hon;Park, Se-Keun;Hossain, Md. M.;Sovandeth, C.;Rattanakarng, W.;Vuong, P.T.;Chien, H.V.
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.489-500
    • /
    • 2018
  • Rural Development Administration (RDA) is promoting the AFACI IPM (Asian Food & Agricultural Cooperation Initiative program). AFACI consist of 12 countries including Bangladesh, Cambodia, Thailand, Vietnam and so on. The main goal of the AFACI IPM project is 'Establishment of an international cooperative network for the best management of migratory rice planthoppers and setting data-base of pests occurrence information. As a result of the suvey, Planthoppers were increasing all the way from tillering stage to ripe stage and do not appear to be peak of one or two like korea case. In detail, 1,673 of BPH (Nilaparvata lugens) occurred in survey site of Svay Reang, Cambodia, followed by 1.237 at Dobila, Bangladesh. In the case of White backed planthopper (Sogatella furcifera), 1,163 of WBPH occurred in survey site of Dobila, Bangladesh and 849 WBPH were collected at Hamkuria, Bangladesh. It is expected to verify the occurrence and movement patterns of hoppers among member countries in the future.

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • Park, Dong-Woo;Kim, Youngsoo;Lee, Sang-Mahn;Ka, Jong-Ok;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-280
    • /
    • 2000
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as rarbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

  • PDF

The Absorption and Metabolism of Fenobucarb and Carbofuran by Susceptible and Carbamate Insecticide-selected Strains of the Brown Planthopper (Nilaparvata lugens Stal) (Fenobucarb 및 Carbofuran의 저항성 벼멸구 체벽 투과량과 체내대사에 관한 연구)

  • 박형만;이영득;최승윤
    • Korean journal of applied entomology
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 1991
  • Cuticular penetration and detoxication as mechanisms of resistance to the carbamate insecticides in fenobucarb-selected($R_{f}$) and carbofuran-selected($R_{c}$) strains of the brown planthopper (N. lugens Stal) were investigated. Rates of penetration were not significantly different in the susceptible and resistant strains. However, total amount of excretion of the $R_{f}$ and $R_{c}$ strains were much larger than that of the susceptible strain. Fenovucarb and carbofuran were in vivo metabolizd much faster in the $R_{f}$ strain than in the susceptible strain. OSBP(o-sec-butyl phenol) and 3-ketocarbofuran phenol were invitro the major metabolites of fenobucarb and carbofuran in the brown planthopper, respectively. Total amount of the two major metabolites were produced abotu 2 times larger in the $R_{f}$ and $R_{c}$ strains compared to the susceptible strain. OSBP and 3-ketocarbofuran phenol were not so toxic to the brown planthopper ($LD_{50}$ >100 $\mu\textrm{g}$/g hopper). Based on our data, detoxication plays a large role in resistance to fenobucarb and carbofuran in the resistant strain of BPH, although several resistance factors maybe involved.

  • PDF

Roles of MicroRNA-21 and MicroRNA-29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer

  • Mohamad, Maisarah;Wahab, Norhazlina Abdul;Yunus, Rosna;Murad, Nor AzianAbdul;Zainuddin, Zulkifli Md;Sundaram, Murali;Mokhtar, Norfilza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3437-3445
    • /
    • 2016
  • Background: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be down-regulated in clinical samples, most likely due to the post-transcriptional modification by microRNAs. Targeted genes would be up-regulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors. Materials and Methods: MicroRNA software predicted that miR-21 targets VCL while miR-29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalin-fixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE-1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels. Results: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down-regulated while CX3CL1 was up-regulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly upregulated while CX3CL1 mRNA was significantly down-regulated compared to the RWPE-1 case. Conclusions: The down-regulation of VCL in FFPE specimens is most likely regulated by miR-21 based on the in vitro evidence but the exact mechanism of how miR-21 can regulate VCL is unclear. Up-regulated in CaP, CX3CL1 was found not regulated by miR-29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNA-mRNA interactions may provide additional knowledge for individualized study of cancers.