• Title/Summary/Keyword: boundary-layer

Search Result 2,613, Processing Time 0.039 seconds

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.

Sliding Mode Control with Nonlinear Interpolation in Variable Boundary Layer

  • Kim, Yookyung;Jeon, Gijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.1-35
    • /
    • 2002
  • $\textbullet$ Sliding mode control (SMC) with nonlinear interpolation in variable boundary layer (VBL) is proposed $\textbullet$ A sigmoid function is used for nonlinear interpolation in VBL. $\textbullet$ The Parameter of the sigmoid function is tuned by fuzzy controller $\textbullet$ The choice of parameter for the sigmoid function is guided by FC. $\textbullet$ The parameter is continuously updated as boundary layer thickness varies. $\textbullet$ The proposed method hasbetter tracking performance than the conventional linear interpolation $\textbullet$ To demonstrate its performance the proposed control algorithm is applied to a nonlinear system.

  • PDF

Wave Boundary Layer: Parameterization Technique and Its Proof

  • Belevich, M.;Safray, A.;Lee, Kwi-Joo;Kim, Kyoung-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.10-20
    • /
    • 2002
  • 본 논문에서는 바다의 자유표면에서 생성되는 항력에 대한 물리적 특성에 대한 연구가 기술되었다. 2차원 파장(Wave Field) 매개변수해석기법(Parametric Analyzing Technique)을 근거로 한 파경계층(Wave Boundary Layer : WBL)의 1차원 모델로서 항력계산과 파경계층의 특성을 추정하였으며 이론의 간략화(Simplifying)에 대한 연구에 주력하였다.

Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (I) -A Time-Averaged Characteristic- (주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(I) -시간평균된 유동 특성-)

  • Park, Tae-Chun;Jeon, U-Pyeong;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.776-785
    • /
    • 2001
  • Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2$\times$10(sup)5 and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase-and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer.

Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer

  • Kim, Yoo-K.;Jeon, Gi-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1810-1815
    • /
    • 2003
  • Sliding mode control with nonlinear interpolation in the boundary layer is proposed. A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its parameter is tuned by a fuzzy logic controller. The fuzzy logic controller that takes the distance between the system state and the sliding surface as its input guides the choice of parameter of the modified sigmoid function and the parameter is on-line tuned. Owing to the decreased thickness, the proposed method has better tracking performance than the conventional linear interpolation method. To demonstrate its performance, the proposed control algorithm is applied to a simple nonlinear system model.

  • PDF

A Study on the Boundary Layer Thickness at a Liquid-Vapor Interface (기액계면의 경계층 두께에 관한 연구)

  • Choi, Soon-Ho;Song, Chi-Sung;Choi, Hyun-Kyu;Lee, Jung-Hye;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1086-1091
    • /
    • 2004
  • The boundary layer is a very important characteristic of a liquid-vapor interface since it governs the heat and mass transfer phenomena across an interface. However, the thickness of a boundary layer is generally micro- or nano-sized, which requires highly accurate measurement devices and, consequently, costs the related experiments very high and time-consuming. Due to these size dependent limitations, the experiments related with a nano-scaled size have suffered from the errors and the reliability of the obtained data. This study is performed to grasp the characteristics of a liquid-vapor interface, by using a molecular dynamics method. The simulation results were compared with other studies if possible. Although other studies reported that there existed a temperature discontinuity over an interface when the system was reduced to micro- or nano-sized, we confirmed that there was no such a temperature discontinuity.

  • PDF

The Effects of Nonequilibrium Condensation on Shock/Boundary Layer Interaction

  • Kim, Heuy-Dong;Lee, Kwon-Hee;Toshiaki. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.788-795
    • /
    • 2001
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computation compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilbrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • 홍진숙;전재진;김상윤;신구균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2002
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boundary layer in the low noise wind tunnel. From this experiment we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and find the relations between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

The Effect of Nonequilibrium Condensation on Shock/Boundary Layer Interaction (비평형응축이 충격파와 경계층의 간섭에 미치는 영향)

  • Kim, H.D.;Lee, K.H.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.544-549
    • /
    • 2000
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computations compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilibrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF