There were appreciable progresses on the study of shock wave / boundary layer interaction control in the transonic flow without nonequilibrium condensation. But in general, the actual flows associated with those of the airfoil of high speed flight body, the cascade of steam turbine and so on accompany the nonequilibrium condensation, and under a certain circumstance condensation shock wave occurs. Condensation shock wave / boundary layer interaction control is quite different from that of case without condensation, because the droplets generated by the result of nonequilibrium condensation may clog the holes of the porous wall for passive control and the flow interaction mechanism between the droplets and the porous system is concerned in the flow with nonequilibrium condensation. In these connections, it is necessary to study the condensation shock wave / boundary layer interaction control by passive cavity in the flow accompanying nonequilibrium condensation with condensation shock wave. In the present study, experiments were made on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of the porosity, the porous wall area and the depth of cavity on the pressure distribution around condensation shock wave. It was found that the porosity of 12% which was larger than the case of without nonequilibrium condensation produced the largest reduction of pressure fluctuations in the vicinity of condensation shock wave. The results also showed that wider porous area, deeper cavity for the same porosity of 12% are more favourable "passive" effect than the cases of its opposite. opposite.
The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.
The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30$^{\circ}$ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30$^{\circ}$. 5. The wind forces at the wind direction of 30$^{\circ}$ instead of 0$^{\circ}$ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.
Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
Wind and Structures
/
제23권1호
/
pp.1-18
/
2016
This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.
The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.
본 연구에서는 트윈박스 단면인 이순신대교의 레이놀즈수 변화에 따른 공기력의 영향을 살펴보는데 그 목적이 있다. 이를 위하여 1/30 대축척 모형을 제작하여 공군사관학교 아음속 중형 풍동에서 최대 풍속 70m/s까지 풍속을 증가시켜가면서 공기력을 측정하여, 전북대학교 소형풍동에서 수행한 저레이놀즈수 풍동실험 결과와 비교하였다. 본 연구 대상 교량 단면은 레이놀즈수의 영향을 받는 것으로 나타났으며, 고레이놀즈수 실험 결과 기존 저레이놀즈수 실험보다 항력계수는 약 23%정도 낮은 수준인걸로 나타났다. 또한 경계층 촉진장치를 효과적으로 이용하면 기존의 저레이놀즈수 풍동실험 조건에서 고레이놀즈수 모사 실험이 가능한 것으로 판단된다.
To investigate the non-Gaussian properties of fluctuating wind pressures and the error margin of extreme wind loads on a long-span curved roof with matching and mismatching ratios of turbulence integral scales to depth (Lux/D), a series of synchronized pressure tests on the rigid model of the complex curved roof were conducted. The regions of Gaussian distribution and non-Gaussian distribution were identified by two criteria, which were based on the cumulative probabilities of higher-order statistical moments (skewness and kurtosis coefficients, Sk and Ku) and spatial correlation of fluctuating wind pressures, respectively. Then the characteristics of fluctuating wind-loads in the non-Gaussian region were analyzed in detail in order to understand the effects of turbulence integral-scale. Results showed that the fluctuating pressures with obvious negative-skewness appear in the area near the leading edge, which is categorized as the non-Gaussian region by both two identification criteria. Comparing with those in the wind field with matching Lux/D, the range of non-Gaussian region almost unchanged with a smaller Lux/D, while the non-Gaussian features become more evident, leading to higher values of Sk, Ku and peak factor. On contrary, the values of fluctuating pressures become lower in the wind field with a smaller Lux/D, eventually resulting in underestimation of extreme wind loads. Hence, the matching relationship of turbulence integral scale to depth should be carefully considered as estimating the extreme wind loads of long-span roof by wind tunnel tests.
A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.
Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
Journal of Mechanical Science and Technology
/
제17권3호
/
pp.440-448
/
2003
In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.
A passive control of interaction of condensation shock wave / boundary layer for reducing the strength of condensation shock was conducted experimentally in a 2.5 * 8 cm$^{2}$ indraft type supersonic wind tunnel. The effects of following factors on passive control were investigated: 1) the thickness of porous wall, 2) the diameter of porous hole, and 3) the orientation of porous hole. On the other hand, the location of nonequilibrium condensation region and condensation shock wave was controlled by regulation of the stagnation conditions. Surface static pressure measurements as well as Schlieren observations of the flow field were obtained, and their effects were compared with the results the cases of without passive control. It was found that thinner porous wall, smaller porous hole and FFH orientation for the same cavity size and porosity of 12% are more favourable than the cases of its opposite.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.