• Title/Summary/Keyword: boundary layer flow separation

Search Result 196, Processing Time 0.034 seconds

Study of Vortex Generator for Aerodynamic Improvement (공력특성 향상을 위한 와류발생기에 대한 고찰)

  • Kim, Cheol-Wan;Shim, Jae-Yeol;Kim, Eung-Tai;Lee, Dae-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.483-486
    • /
    • 2008
  • Numerical Simulation was performed to investigate the role of vortex generator. Vortex generator installed on the upper surface of the wing, generates vortex flow, mimic the external flow with boundary layer flow and transfer energy from outside to wall boundary. Vortex generator, thus, retards the flow separation and increases the lift and drag of the wing.

  • PDF

An Experimental Study of Roughness Effects on the Turbulent Flow Downstream of a Backward-Facing Step (조도가 후향계단 주위의 난류유동에 미치는 영향에 대한 실험적 연구)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2083-2099
    • /
    • 1991
  • An experiment has been carried out to investigate the aerodynamic effect of surface roughness on the characteristics of the turbulent separation and reattaching flow downstream of a backward-facing step. The distributions of boundary layer parameters, forward-flow fraction and turbulent stresses in the region near the reattachment point are measured with a split film sensor. It is demonstrated that the streamwise distributions of the forward-flow fraction in the recirculation and reattachment regions are similar, independent of the roughness. The reattachment length is found to be only weakly affected by the roughness. It is also shown that the velocity profile on the rough surface approaches to that of the equilibrium turbulent boundary layer faster than that on the smooth surface in the redeveloping region after reattachment.

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Experimental Study on the Effects of Upstream Wakes on Cascade Flow (상류 후류의 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyeong-Ju;Jo, Gang-Rae;Ju, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.330-338
    • /
    • 2001
  • This paper is concerned with the effect of cylinder wakes upstream on blade characteristics of compressor cascade(NCA 65 series). At first, it is found that the velocity defect ratio of cylinder wake varies according to the acceleration and deceleration in a flow field but, is conserved nearly constant at flow downstream the cascade, irrespective of the flow path in the cascade. When a cylinder wake flows along near the suction surface of the blade, or impinges on the leading edge, the turbulent velocities are supplied on or inside the outer edge of boundary layer near the leading edge of suction surface, and the transition to a transitional or turbulent boundary layers is induced, so that the laminar separation is prevented, but the profile loss increases. The transition of boundary layer to a transitional or turbulent one is strongly related with the strength of added turbulent velocities near the leading edge on the suction surface, which is influenced by the flow path of a cylinder wake.

Plume Interference Effects on the Missile with a Simplified Afterbody at Transonic$^{}$ersonic Speeds

  • Kim, H. S.;Kim, H. D.;Lee, Y. K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.41-42
    • /
    • 2002
  • The powered missiles with very high thrust level can make highly underexpanded jet plume downstream of tile exhaust nozzle exit so that strong interactions between the exhaust plume and a free stream occur around the body at transonic or supersonic speeds. The interactions result in extremely complicated flow phenomena, which consist of plume-induced boundary layer separation, strong shear layers, various shock waves, and interactions among these. The flow characteristics are inherent nonlinear and severe unstable during the flight at its normal speed as well as taking-off and landing. Eventually, the induced boundary layer separation and pitching and yawing moments by the interactions cause undesirable effects ell the static stability and control of a missile.

  • PDF

Self-excited Variability of the East Korea Warm Current: A Quasi-Geostyophic Model Study

  • Lee, Sang-Ki
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 1999
  • A two-layer quasi-geostrophic numerical model is used to investigate the temporal variability of the East Korea Warm Current (EKWC), especially the separation from the Korean coast and the generation of warm eddies. An attention is given on the active role of the nonlinear boundary layer process. For this, an idealized flat bottom model of the East Sea is forced with the annual mean wind curl and with the inflow-outflow specified at the Korea (Tsushima) and Tsugaru Straits. Two types of separation mechanisms are identified. The first one is influenced by the westward movement of the recirculating leg of the EKWC (externally driven separation),the second one is solely driven by the boundary layer dynamics (internally driven separation). However, these two processes are not independent, and usually coexist. It is hypothesized that 'internally driven separation' arises as the result of relative vorticity production at the wall, its subsequent advection via the EKWC, and its accumulation up to a critical level characterized by the separation of the boundary flow from the coast. It is found that the sharp southeastern corner of the Korean peninsula provides a favorable condition for the accumulation of relative vorticity. The separation of the EKWC usually accompanies the generation of a warm eddy with a diameter of about 120 km. The warm eddy has a typical layer-averaged velocity of 0.3 m/s and its lifespan is up to a year. In general, the characteristics of the simulated warm eddy are compatible with observations. A conclusion is therefore drawn that the variability of the EKWC is at least partially self-excited, not being influenced by any sources of perturbation in the forcing field, and that the likely source of the variability is the barotropic instability although the extent of contribution from the baroclinic instability remains unknown. The effects of the seasonal wind curl and inflow-outflow strength are also investigated.

  • PDF

A Numerical Study on Mixed Convection in Boundary Layer Flows over Inclined Surfaces (경사진 평판 주위에서 경계층유동의 혼합대류에 관한 연구)

  • 김동현;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.725-733
    • /
    • 1990
  • An analysis of laminar mixed convection flow adjacent to the inclined flat surface which is subjected to a uniform temperature in a uniform free stream is performed. Nonsimilar boundary layed equation are derived by using the mixed convection parameters such that smooth transition from the purely forced convection limit to the purely free convection limit is possible. The governing equations are solved by a finite difference method using the coupled box scheme of sixth order. Numerical results are presented for prandtl numbers of 0.7 and 7 with the angle of inclination ranging from 0 to 90 degree from the vertical. The velocity distributions for the buoyancy assisting flow exhibit a significant overshoot above the free stream value in the region of intense mixed convection and the velocity field is found to be more sensitive to the buoyancy effect than the temperature field. The separation point near the wall was obtained for the buoyancy opposing flow. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the local Grashoff number in the mixed convection parameter. For large Prandtl number, the Nusselt number and the friction factor decrease significantly near the separation point. Present numerical predictions are in good agreement with recent experimental results by Ramachandran.

Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube (충격파관에서 발생하는 반사 충격파와 경계층의 간섭에 대한 연구)

  • Kim, Dong Wook;Kim, Tae Ho;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.481-487
    • /
    • 2017
  • The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

A Study on Turbulent Boundary Layer around a Two-Dimensional Hydrofoil using LDV System (레이저 유속계를 이용한 2차원날개 단면 주위의 난류경계층 연구)

  • J.W. Ahn;J.T. Lee;K.S. Kim;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.146-158
    • /
    • 1991
  • The flow around a two-dimensional foil section Is measured by a LDV(Laser Doppler Velocimetry) system which is capable of measuring the datailed flow field without interfering the original flow field. A 2-color 3-beam LDV system, which is capable of mea,;tiring 2 velocity components simultaneously and uses 2W Ar-Ion laser source, is used to measure the flow field around an NACA0012 foil section. The measured flow velocities are analysed iii order to study the boundary layer characteristics, flow separation and the detail structure of the flow near the trailing edge of the foil. The boundary layer characteristics are compared with the results by the head's momentum integral method. For the case of small angle of attack at relatively higher Reynolds number, both results show good agreements. The measured data of the velocity field around an NACA0012 foil section would be valuable data to validate the CFD(Computational Fluid Dynamic) calculation results. The developed experimental technique to evaluate the characteristics of two-dimensional foil sections is essential tool to develope new blade sections which have good lift characteristics and better cavitation performances.

  • PDF