다이내믹 프로그래밍 기반의 스테레오 정합 기법은 전체 영상 또는 한 열의 영상정보를 특정 화소의 정합에 모두 사용하는 전역-대상 기법으로 정합 연산시 폐색영역을 찾을 수 있다는 장점을 가지고 있다. 본 논문에서는 영상의 특징점, 즉 경계정보를 추가로 사용하여 스트리킹 현상을 감소시키고 변이지도의 오차율을 줄이는 방법을 제안한다. 이 방법은 기본적으로 경로선택에 있어서의 페널티를 대상화소의 주변 화소들에 따라 조정한다. 또한 경계정보를 사용하여 특정 화소에 대한 신뢰성을 재검사하는데, 이 신뢰성 재검사는 역추적과정에서 실시한다. Middlebury에서 제공하는 네 쌍의 영상으로 실험한 결과 제안한 기법의 에러율을 6.33% 29위에 랭크됐다. 이 결과는 이전에 제안된 다이내믹 프로그래밍 기반의 정합 기법 중 가장 좋은 결과이다.
본 연구에서는 사진측량 과정에서 항공삼각측량의 접합점 관측과정을 경계선 검색기법과 영상정합기법을 이용하여 특징점 추출, 영상의 정합 상좌표의 관측 과정을 자동화하였다. 본 연구를 통하여 기존에 수동적인 방법에 의하여 수행되어 오던 항공삼각측량의 접합점 선정 및 상좌표 관측 과정을 특징점 추출 및 좌우 동일점 탐색과정 수행에 의한 접합점 선정 및 관측 자동화 기법을 개발하였다. 자동화된 접합점 선정과정을 적응하여 산출된 결과물은 상좌표의 평균제곱근 오차가 $6.8{\mu}m$로서, 기존의 해석적 사진 측량방법이 작업자의 경력이나 기술 숙련도에 따라 편차가 발생하는 것에 비해, 균일한 성과를 산출할 수 있으며, 관측과정에서 소요되는 처리시간은 기존의 해석적인 방법에 비하여 61.2% 절감되어 경제적인 작업 처리가 가능하였다.
본 논문에서는 화상회의 시스템 등 인물 위주의 스테레오 영상으로부터 깊이 정보를 추출하기 위한 스테레오 정합 기법을 제안한다. 제안한 기법에서는 두 대의 스테레오 카메라로부터 획득된 영상에서 임계값을 이용하여 배경을 먼저 제거하고, 배경이 제거된 영상과 카메라 보정을 거친 영상을 이용하여 초기 변이지도(disparity map)와 R, G, B, white 4개의 색상 성분으로 분할한 영상을 생성하게 된다. 각 색상 정보로 분할된 영상의 경계(edge) 성분을 추출하고, 추출된 경계에서 정합 창을 이용하여 변이를 추정하고 각 색상 정보의 변이지도를 적절히 조합하여 최종 변이지도를 생성하게 된다. 실험 결과 제안한 기법이 기존의 영역기반(window based) 정합기법과 동적계획법(dynamic programing method) 등보다 인물 위주의 스테레오 영상에서 더 우수한 성능을 가지는 것을 확인하였다.
본 논문에서는 1m 해상도의 위성영상으로부터 건물의 경계선을 검출하기 위해 영상분할과 변이지도(disparity map)를 이용하는 새로운 방법을 제안한다. Watershed 방법으로 영상을 분할하고 분할된 영역 내부의 변이를 다중정합창틀(multiple matching window)과 결합된 다차원특징벡터정합(multi-dimensional feature vector matching)을 이용하여 계산한다 분할된 인접 영역들 가운데 panchromatic 및 multispectral 밝기값과 변이의 평균값이 유사하면 두 영역을 결합하여 하나의 영역을 생성하고 이 과정을 반복적으로 수행한다. 영역의 평균 변이값이 기준 값보다 크면 이를 건물 지붕 영역으로 결정한다. IKONOS 위성영상에 제안한 방법을 적용하여 작은 건물이 밀집되어 있는 도시 지역에서 건물 지붕의 영역과 경계선을 효과적으로 검출할 수 있었다.
In this paper, we present a real-time method to detect moving objects in a rotating and zooming camera. It is useful for camera surveillance of fixed but rotating camera, camera on moving car, and so on. We first compensate the global motion, and then exploit the displaced frame difference (DFD) to find the block-wise boundary. For robust detection, we propose a kind of image to combine the detections from consecutive frames. We use the block-wise detection to achieve the real-time speed, except the pixel-wise DFD. In addition, a fast block-matching algorithm is proposed to obtain local motions and then global affine motion. In the experimental results, we demonstrate that our proposed algorithm can handle the real-time detection of common object, small object, multiple objects, the objects in low-contrast environment, and the object in zooming camera.
본 논문에서는 동적 계획법(dynamic programming)과 이미지 세그먼트(segment)를 이용한 새로운 스테레오 정합(stereo matching)기법을 제안한다. 일반적으로 동적 계획법(dynamic programming)은 빠르면서도 비교적 정확하고, 조밀(dense)한 disparity map을 얻을 수 있다. 그러나 경계(boundary)근처의 폐색지역(occlusion region)이나, 텍스쳐가 적은 모호한 영역에서는 잘못된 결과를 유도할 수 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 먼저 이미지를 아주 작은 영역으로 분할(over-segmentation)하고, 이런 작은 영역들이 비슷한 disparity를 가질 것이라고 가정한다. 다음으로 동적 계획법(dynamic programming)을 통해 정합을 수행한다. 여기서 계산비용(cost)은 기존의 정합윈도우 안에서 세그먼트 영역을 적용한 새로운 비용함수를 사용하며, 이 새로운 비용함수를 통해 정확도를 높인다. 마지막으로 동적 계획법을 통하여 얻어진 조밀한 disparity map을 세그먼트 영역들의 시각특성(visibility)과 유사도(similarity)를 이용하여 에러를 찾아내고, 세그먼트 정합을 통해 수정함으로 정확한 disparity map을 찾아낸다.
This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.
본 논문은 내용 기반 검색 기법에 의한 보다 효율적인 특징 추출 및 영상 검색 알고리즘을 제안하였다. 먼저, MPEG 비디오의 key frame을 입력 영상으로 하여 Gaussian edge detector를 이용하여 객체를 추출하고, 그에 따른 객체 특징들, location feature distributed dimension feature와 invariant moments feature를 추출하였다. 다음, 제안하는 HAQ (Histogram Analysis and Quantization) 알고리즘으로 characteristic color feature를 추출하였다. 마지막으로 key frame이 아닌 shot frame을 질의영상으로 하여 제안된 matching 기법에 따라 4가지 특징들의 단계별 검색을 수행하였다. 본 논문의 목적은 사용자가 요구하는 장면이 속한 비디오의 shot 경계 내의 key frame을 검색하는 새로운 내용 기반 검색 알고리즘을 제안함에 있다. 제안된 알고리즘을 바탕으로 10개의 뮤직비디오, 836개의 시험 영상으로 실험한 결과, 효과적인 검색 효율을 보였다.
In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.
Kim, Myoung-Hoon;Jung, Soon-Hong;Kang, Beum-Joo;Sull, Sang-Hoon
한국방송∙미디어공학회:학술대회논문집
/
한국방송공학회 2009년도 IWAIT
/
pp.273-277
/
2009
A compressed video stream is very sensitive to transmission errors that may severely degrade the reconstructed image. Therefore, error resilience is an essential problem in video communications. In this paper, we propose novel temporal error concealment techniques for recovering lost or erroneously received macroblock (MB). To reduce the computational complexity, the proposed method adaptively determines the search range for each lost MB to find best matched block in the previous frame. And the original corrupted MB split into for $8{\times}8$ sub-MBs, and estimates motion vector (MV) of each sub-MB using its boundary information. Then the estimated MVs are utilized to reconstruct the damaged MB. In simulation results, the proposed method shows better performance than conventional methods in both aspects of PSNR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.