• 제목/요약/키워드: boundary estimation

Search Result 521, Processing Time 0.03 seconds

Buckling Characteristics of Ship Bottom Plate - On the Stiffener Restraint Effects - (선박 선저외판의 좌굴특성에 관한 연구 - 보강재의 구속영향 검토 -)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.130-138
    • /
    • 1994
  • Bottom plates of empty hold are subjected to not only water pressure but also bi-axial inplane loads, specially in the alternate full loading full loading condition of bulk carrier. This kind of plate behaviours is very difficult to be explained and to be estimated using common buckling design guide in the initial design stage of hull structure, therefore, some more concrete studies for this plate structure was performed based on the currently developed buckling estimation formula. In this buckling formula, torsional stiffness effects of edge stiffener are included additionally and effects of elastic buckling strength of plate panel are treated as characteristic value problem. Also considering boundary stiffener effects and inplane and lateral loading, evaluation of bottom plate scantling using this formula, calculated results using various classification regulation of buckling strength and results of first report approach are compared each other and useful guides using developed formula for bottom plate scantling design are discussed.

  • PDF

The Improved Estimation of the Least Upper Bound to Search for RSA's Private key

  • Somsuk, Kritsanapong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2074-2093
    • /
    • 2022
  • RSA is known as one of the best techniques for securing secret information across an unsecured network. The private key which is one of private parameters is the aim for attackers. However, it is exceedingly impossible to derive this value without disclosing all unknown parameters. In fact, many methods to recover the private key were proposed, the performance of each algorithm is acceptable for the different cases. For example, Wiener's attack is extremely efficient when the private key is very small. On the other hand, Fermat's factoring can quickly break RSA when the difference between two large prime factors of the modulus is relatively small. In general, if all private parameters are not disclosed, attackers will be able to confirm that the private key is unquestionably inside the scope [3, n - 2], where n is the modulus. However, this scope has already been reduced by increasing the greatest lower bound to [dil, n - 2], where dil ≥ 3. The aim of this paper is to decrease the least upper bound to narrow the scope that the private key will remain within this boundary. After finishing the proposed method, the new scope of the private key can be allocated as [dil, dir], where dir ≤ n - 2. In fact, if the private key is extremely close to the new greatest lower bound, it can be retrieved quickly by performing a brute force attack, in which dir is decreased until it is equal to the private key. The experimental results indicate that the proposed method is extremely effective when the difference between prime factors is close to each other and one of two following requirement holds: the first condition is that the multiplier of Euler totient function is very close to the public key's small value whereas the second condition is that the public key should be large whenever the multiplier is far enough.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

3D Human Shape Estimation from a Silhouette Image by using Statistical Human Shape Spaces (통계적 신체 외형 데이터베이스를 활용한 실루엣으로부터의 3차원 인체 외형 예측)

  • Dasol Ahn;Sang Il Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, we present a method for estimating full 3D shapes from given 2D silhouette images of human bodies. Because the silhouette only consists of the partial information on the true shape, it is an ill-posed problem. To address the problem, we use the statistical human shape space obtained from the existing large 3D human shape database. The method consists of three steps. First, we extract the boundary pixels and their appropriate normal vectors from the input silhouette images. Then, we initialize the correspondences of each pixel to the vertex of the statistically-deformable 3D human model. Finally, we numerically optimize the parameters of the statistical model to fit best to the given silhouettes. The viability and the robustness of the method is demonstrated with various experiments.

Single Image Super Resolution Method based on Texture Contrast Weighting (질감 대조 가중치를 이용한 단일 영상의 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • In this paper, proposes a super resolution method that enhances the quality of results by refining texture features, contrasting each, and utilizing the results as weights. For the improvement of quality, a precise and clear restoration result in details such as boundary areas is crucial in super resolution, along with minimizing unnecessary artifacts like noise. The proposed method constructs a residual block structure with multiple paths and skip-connections for feature estimation in conventional Convolutional Neural Network (CNN)-based super resolution methods to enhance quality. Additional learning is performed for sharpened and blurred image results for further texture analysis. By contrasting each super resolution result and allocating weights through this process, the proposed method achieves improved quality in detailed and smoothed areas of the image. The experimental results of the proposed method, evaluated using the PSNR and SSIM values as quality metrics, show higher results compared to existing algorithms, confirming the enhancement in quality.

Estimation of surface nitrogen dioxide mixing ratio in Seoul using the OMI satellite data (OMI 위성자료를 활용한 서울 지표 이산화질소 혼합비 추정 연구)

  • Kim, Daewon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Yang, Jiwon;Ryu, Jaeyong;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2017
  • We, for the first time, estimated daily and monthly surface nitrogen dioxide ($NO_2$) volume mixing ratio (VMR) using three regression models with $NO_2$ tropospheric vertical column density (OMIT-rop $NO_2$ VCD) data obtained from Ozone Monitoring Instrument (OMI) in Seoul in South Korea at OMI overpass time (13:45 local time). First linear regression model (M1) is a linear regression equation between OMI-Trop $NO_2$ VCD and in situ $NO_2$ VMR, whereas second linear regression model (M2) incorporates boundary layer height (BLH), temperature, and pressure obtained from Atmospheric Infrared Sounder (AIRS) and OMI-Trop $NO_2$ VCD. Last models (M3M & M3D) are a multiple linear regression equations which include OMI-Trop $NO_2$ VCD, BLH and various meteorological data. In this study, we determined three types of regression models for the training period between 2009 and 2011, and the performance of those regression models was evaluated via comparison with the surface $NO_2$ VMR data obtained from in situ measurements (in situ $NO_2$ VMR) in 2012. The monthly mean surface $NO_2$ VMRs estimated by M3M showed good agreements with those of in situ measurements(avg. R = 0.77). In terms of the daily (13:45LT) $NO_2$ estimation, the highest correlations were found between the daily surface $NO_2$ VMRs estimated by M3D and in-situ $NO_2$ VMRs (avg. R = 0.55). The estimated surface $NO_2$ VMRs by three modelstend to be underestimated. We also discussed the performance of these empirical modelsfor surface $NO_2$ VMR estimation with respect to otherstatistical data such asroot mean square error (RMSE), mean bias, mean absolute error (MAE), and percent difference. This present study shows a possibility of estimating surface $NO_2$ VMR using the satellite measurement.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.

Orhtophoto Accuracy Assessment of Ultra-light Fixed Wing UAV Photogrammetry Techniques (초경량 고정익무인항공기 사진측량기법의 정사영상 정확도 평가)

  • Lee, In Su;Lee, Jae One;Kim, Su Jeong;Hong, Soon Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2593-2600
    • /
    • 2013
  • The main purpose of this study is to carry out the performance evaluation of Ultra-light Fixed Wing UAV(Unmanned Aerial Vehicle) photogrammetry which is being, currently, applied for various fields such as cultural assets, accident survey, military reconnaissance work, and disaster management at home and abroad. Firstly, RMSE estimation of Aerial Triangulation (AT) are within approximately 0.10 cm in position (X, Y). And through the comparison of parcel's boundary points coordinates by terrestrial surveying and by UAV photogrammetry, the analysis shows that RMSE are shifted approximately 0.174~0.205 m in X-direction, 0.294~0.298 m in Y-direction respectively. Lastly, parcel's area by orthophoto of UAV photogrammetry and by that of cadastre register has been shown the difference by 0.118 m2. The results presented in this study is just one case study of orthophoto accuracy assessment of Ultra-light fixed wing UAV photogrammetry, hereafter various researches such as AT, direct-georeferencing, flight planning, practical applications, etc. should be necessary continuously.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

A feasibility modeling of potential dam site for hydroelectricity based on ASTGTM DEM data (ASTGTM 전지구 DEM 기반의 수력발전댐 적지분석 사전모델링)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.545-555
    • /
    • 2020
  • A feasibility modeling for potential hydroelectric dam site selection was suggested using 1 sec ASTGTM (ASTER Global Digital Elevation Model) and Terra/Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) derived land use (MCD12Q1) data. The modeling includes DEM pre-processing of peak, sink, and flat, river network generation, watershed delineation and segmentation, terrain analysis of stream cross section and reservoir storage, and estimation of submerged area for compensation. The modeling algorithms were developed using Python and as an open source GIS. When a user-defined stream point is selected, the model evaluates potential hydroelectric head, reservoir surface area and storage capacity curve, watershed time of concentration from DEM, and compensation area from land use data. The model was tested for 4 locations of already constructed Buhang, BohyunMountain, Sungdeok, and Yeongju dams. The modeling results obtained maximum possible heads of 37.0, 67.0, 73.0, 42.0 m, surface areas of 1.81, 2.4, 2.8, 8.8 ㎢, storages of 35.9, 68.0, 91.3, 168.3×106 ㎥ respectively. BohyunMountain and Sungdeok show validity but in case of Buhang and Yeongju dams have maximum head errors. These errors came from the stream generation error due to ASTGTM. So, wrong dam watershed boundary limit the head. This study showed a possibility to estimate potential hydroelectric dam sites before field investigation especially for overseas project.