• Title/Summary/Keyword: boundary contrast map

Search Result 7, Processing Time 0.02 seconds

Image saliency detection based on geodesic-like and boundary contrast maps

  • Guo, Yingchun;Liu, Yi;Ma, Runxin
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.797-810
    • /
    • 2019
  • Image saliency detection is the basis of perceptual image processing, which is significant to subsequent image processing methods. Most saliency detection methods can detect only a single object with a high-contrast background, but they have no effect on the extraction of a salient object from images with complex low-contrast backgrounds. With the prior knowledge, this paper proposes a method for detecting salient objects by combining the boundary contrast map and the geodesics-like maps. This method can highlight the foreground uniformly and extract the salient objects efficiently in images with low-contrast backgrounds. The classical receiver operating characteristics (ROC) curve, which compares the salient map with the ground truth map, does not reflect the human perception. An ROC curve with distance (distance receiver operating characteristic, DROC) is proposed in this paper, which takes the ROC curve closer to the human subjective perception. Experiments on three benchmark datasets and three low-contrast image datasets, with four evaluation methods including DROC, show that on comparing the eight state-of-the-art approaches, the proposed approach performs well.

COASTLINE DETECTION USING COHERENCE MAP OF ERS TANDEM DATA

  • Kim, Myung-Ki;Park, Jeong-Won;Choi, Jung-Hyun;Jung, Hyung-Sup
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.368-371
    • /
    • 2006
  • A coastline is the boundary between land and ocean masses. Knowledge of coastline is essential for autonomous navigation, geographical exploration, coastal erosion monitoring and modelling, water line change, etc. Many methods have been researched to extract coastlines from the synthetic aperture radar (SAR) and optic images. Most methods were based on the intensity contrast between land and sea regions. However, in these methods, a coastline detection task was very difficult because of insufficient intensity contrast and the ambiguity in distinguishing coastline from other object line. In this paper, we propose an efficient method for the delineation of coastline using interferometric coherence values estimated from ERS tandem pair. The proposed method uses the facts that a tandem pair of ERS is acquired from a time interval of an accurate day and that the coherent and incoherent values in coherence map are land and water, respectively. The coherence map was generated from ERS tandem pair, filtered by MAP filter, and divided into land and water by the determination of threshold value that is based on the bimodality of the histogram. Finally, a coastline was detected by delineating the boundary pixels. There was a good visual match between the detected coastline and the manually contoured line. The interferometric coherence map will be helpful to identify land and water regions easily, and can be used to many applications that are related with a coastline.

  • PDF

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

REAL-TIME DETECTION OF MOVING OBJECTS IN A ROTATING AND ZOOMING CAMERA

  • Li, Ying-Bo;Cho, Won-Ho;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.71-75
    • /
    • 2009
  • In this paper, we present a real-time method to detect moving objects in a rotating and zooming camera. It is useful for camera surveillance of fixed but rotating camera, camera on moving car, and so on. We first compensate the global motion, and then exploit the displaced frame difference (DFD) to find the block-wise boundary. For robust detection, we propose a kind of image to combine the detections from consecutive frames. We use the block-wise detection to achieve the real-time speed, except the pixel-wise DFD. In addition, a fast block-matching algorithm is proposed to obtain local motions and then global affine motion. In the experimental results, we demonstrate that our proposed algorithm can handle the real-time detection of common object, small object, multiple objects, the objects in low-contrast environment, and the object in zooming camera.

  • PDF

Subsurface Structure of the Yeongdong Basin by Analyzing Aeromagnetic and Gravity Data

  • Kim, Kyung-Jin;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2002
  • Aeromagnetic and gravity data were analyzed to delineate the subsurface structure of the Yeongdong basin and its related fault movement in the Okcheon fold belt. The aeromagnetic data of the total intensity (KIGAM, 1983) were reduced to the pole and three dimensional inverse modeling, which considers topography of the survey area in the modeling process, were carried out. The apparent susceptibility map obtained by three dimensional magnetic inversion, as well as the observed aeromagnetic anomaly itself, show clearly the gross structural trend of the Yeongdong basin in the direction on between $N30^{\circ}E$ and $N45^{\circ}E$. Gravity survey was carried out along the profile, of which the length is about 18.2 km across the basin. Maximum relative Bouguer anomaly is about 7 mgals. Both forward and inverse modeling were also carried out for gravity analysis. The magnetic and gravity results show that the Yeongdong basin is developed by the force which had created the NE-SW trending the magnetic anomalies. The susceptibility contrast around Yeongdong fault is apparent, and the southeastern boundary of the basin is clearly defined. The basement depth of the basin appears to be about 1.1 km beneath the sea level, and the width of the basin is estimated to be 7 km based on the simultaneous analysis of gravity and magnetic profiles. There exists an unconformity between the sedimentary rocks and the gneiss at the southeastern boundary, which is the Yeongdong fault, and granodiorite is intruded at the northwestern boundary of the basin. Our results of gravity and magnetic data analysis support that the Yeongdong basin is a pull-apart basin formed by the left-stepping sinistral strike-slip fault, which formed the Okcheon fold belt.

Detection of Visual Attended Regions in Road Images for Assisting Safety Driving (안전 운전 지원을 위한 도로 영상에서 시각 주의 영역 검출)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.94-102
    • /
    • 2012
  • Recently entered into an aging socity as the number of elderly drivers is increasing. Traffic accidents of elderly drivers are caused by driver inattentions such as poor vehicle control due to aging, visual information retrieval problems caused by presbyopia, and objects identifying problems caused by low contrast sensitivity. In this paper, detection method of ROIs on the road is proposed. The proposed method creates the saliency map to detect the candidate ROIs from the input image. And, the input image is segmented to obtain the ROIs boundary. Finally, selective visual attention regions are detected according to the presence or absence of a segmented region with saliency pixels. Experimental results from a variety of outdoor environmental conditions, the proposed method presented a fast object detection and a high detection rate.

High Resolution Gravity Mapping and Its Interpretation from both Shipborne and Satellite Gravity Data in the Ulleung Basin (울릉분지에서의 선상중력과 위성중력 통합에 의한 중력 해상도 향상 및 해석)

  • Park, Chan Hong;Kim, Jeong U;Heo, Sik;Won, Jung Seon;Seok, Bong Chul;Yu, Hae Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • The errors between track segments or at the cross-over points of shipborne gravity were successfully reduced by applying a cross-over error adjustment technique using satellite gravity. The integration of shipborne and satellite altimeter-implied free-air gravity anomalies after the cross-over error adjustment resulted in a high resolution gravity map which contains both short and long wavelength components. The successful adjustment of the cross-over errors in the shipborne gravity using the satellite gravity suggests that the shipborne gravity can be combined with the satellite anomalies characterized by a stable and long wavelength component. The resulting free-air anomaly map is evenly harmonized with both short and long wavelength anomalies. Thus the corrected anomaly map can be better used for the geological interpretation. Free-air anomalies with more than 140 mGal in total variations generally correspond to the seafloor topographic changes in their regional patterns. A series of gravity highs are aligned from the Korea Plateau to the Oki Island, which are interpreted to be caused by seamounts or volcanic topographies. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably responsible for the thin crust and shallow seated mantle. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably suggestive of a thin crust and shallow seated mantle.

  • PDF