• Title/Summary/Keyword: boundary characteristics

Search Result 3,191, Processing Time 0.028 seconds

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1087-1109
    • /
    • 2016
  • In this manuscript, the small scale and thermal effects on vibration behavior of preloaded nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the nonlocal beam problem. Governing equations are derived through Hamilton's principle and then are solved applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement between the results of this research and those available in literature validated the presented approach. The influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details.

Influence of Upstream State on the Interacting Turbulent Boundary Layer (相互作용하는 亂流 境界層에 대한 上流狀態의 影響)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.277-284
    • /
    • 1986
  • A numerical procedure (integral method) for calculating the interacting turbulent boundary layer is set up. With this method, some free interactions with various upstream conditions are simulated in order to investigate the influence of upstream state on the interacting turbulent boundary layer. The results obtained by this numerical simulation can be summarized as follows; Free interaction of upstream unstabilized (or separated) turbulent boundary layer is subcritical regardless of its external Mach number, while free interaction of upstream stabilized turbulent boundary layer has two different characteristics (subcritical, supercritical) according to the external Mach number.

Development of FE Analysis Scheme for Milli-Part Forming Using Grain Element (유한요소법의 입자요소를 이용한 박판 성형해석)

  • 구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.439-442
    • /
    • 2003
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

  • PDF

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

LARGE-EDDY SIMULATION OF TURBULENT BOUNDARY-LAYER FLOW OVER A URBAN TOPOGRAPHY (도시지형을 지나는 난류 경계층 유동의 대와류 수치모사)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.571-574
    • /
    • 2010
  • Large-eddy simulation has been conducted to simulate turbulent boundary-layer flows over an array of regularly distributed obstacles considering various cases of a wind incident angle. The effect of wind direction was investigated in the square cube array that periodic boundary condition was imposed. Characteristics of the turbulent flow over the obstacle array have been found to be very sensitive to the direction of prevailing wind or of mean wind or of mean pressure gradient but varied with height, specially below the urban canopy. Turbulent statistics are changed sensitively with the direction of mean pressure gradient around 10 degree.

  • PDF

Wall Pressure Fluctuations of the Boundary Layer Flow at the Nose of and Axisymmetric Body (축대칭 물체 선단에서 발생하는 경계층 내 벽면 변동 압력에 관한 연구)

  • 신구균;홍진숙;김상윤;김상렬;박규철
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.602-609
    • /
    • 2000
  • When an axisymmetric body moves through air the boundary layer near the stagnation region remains laminar and subsequently it goes through transition to turbulent. The experimental investigation described in this paper concerns the characteristics of wall pressure fluctuations at the initial stage of boundary layer flow including transition. Flush-mounted microphones are used to measure the wall pressure fluctuations at the transition and turbulent boundary layer region of a blunt axisymmetric body in the low noise wind tunnel. It if found from this study that the wall pressure fluctuations in the transition region is higher than that in the turbulent region.

  • PDF

Soot Formation and Oxidation of an Ethylene Laminar Diffusion Flame with Different Radiation Boundary Conditions (에틸렌 층류 확산화염의 복사경계조건에 따른 매연생성 및 산화특성)

  • Lee, Chun-Beom;Nam, Youn-Woo;Lee, Won-Nam;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.11-18
    • /
    • 2003
  • The soot formation and oxidation characteristics with different radiation boundary conditions have been studied experimentally in a co-flow ethylene/air laminar diffusion flame. The boundary conditions are two cases, one is a fully refractive radiation boundary condition by a polished aluminum cylinder(AL) and the other is a fully absorbing radiation boundary condition by a black body cylinder(BB). The AL case compared with BB condition show the lower inception point, denser soot volume fraction, wider and longer annular soot area owing to the reabsorption of radiating energy.

  • PDF

An active grid for the simulation of atmospheric boundary layers in a wind tunnel

  • Talamelli, A.;Riparbelli, L.;Westin, J.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 2004
  • A technique for the simulation of atmospheric boundary layers in wind tunnels is developed and tested experimentally. The device consists of a grid made of seven horizontal and vertical evenly distributed bars in which air injection holes are drilled in order to influence the flow in the wind tunnel. The air flow in each bar can be controlled independently. Firstly, the device is used together with a rough carpet, which covers the test section floor, in order to simulate the boundary-layer characteristics over an open rural area. Hot-wire measurements, performed at different positions in the test-section, show the capability of the grid in generating the required boundary layer. An acceptable agreement with statistical values of mean velocity and turbulence profiles has been achieved, together with a good span-wise homogeneity. The results are also compared with those of a passive simulation technique based on the use of spires.

A Numerical Calculation of Eddy Current Field by Applying FEM and BEM Alternately (유한요소법과 경계요소법의 교호적용에 의한 와전류장 해석)

  • Im, Jae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.457-461
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.