• Title/Summary/Keyword: bottom temperature

Search Result 1,361, Processing Time 0.027 seconds

An Experimental Study on the Safely of Portable Butane Gas Range (휴대용 부탄 가스 레인지의 안전성에 관한 실험적 연구)

  • 이근오;이장우;김종현
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2000
  • The objective of this paper is to study burst through the influence of overheating to affect a seamed container using the cookers with different materials and bottom sizes. Following result are drawn from this study; When bottom size of the roast meat had 24cm diameter, the upper part temperature of a seamed container was increased over $40^{\circ}C$. Therefore the cooker material without regard to cooker size had a great influence on the temperature of seamed container. For the natural stone plate which had bottom length 65cm, a seamed container was burst at the cooker temperature $801^{\circ}C$, the surface temperature of a burner $573^{\circ}C$. the upside temperature of seamed container $379^{\circ}C$, the downside temperature of seamed container $236^{\circ}C$ and ambient temperature $34^{\circ}C$. For the cooker of the same bottom area, the stone plate had greater influence on effect of temperature than aluminium cooker. Overheating had a great influence on the seamed container if the bottom or upside diameter of a cooker had been larger than a trivet.

  • PDF

Study on the Bottom Watering for Growing of Tobacco Seedling I. Effect of Bottom Watering on Seedling Growth arid Temperature of Seedbed (담배육묘를 위한 저면관수 연구 I. 저면관수가 묘의 생장 및 묘상 온도에 미치는 영향)

  • 반유선;한종구;신승구;류익상
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 1992
  • This study was conducted to determine the effects of the bottom watering method on seedling growth, temperature of seedbed and working hours. The results of compared conventional watering with bottom watering were as follows: 1. The lowest and highest temperature on surface of bottom watering seedbed were higher about 2-3$^{\circ}C$ and 3-5$^{\circ}C$ than those of conventional plot, respectively. 2. At 30 days after seeding, flesh and dry weight of seedling in bottom watering seedbed were heavier about 121% and 62% than those of seedling in conventional plot, respectively, while dry ratio of that was lower about 30.2%. 3. Plant height of transplanting seedling in bottom watering seedbed was higher about 4-5cm than that of seedling in conventional plot. Otherwise, ratio of top to root and length of root were not significant. 4. Working hours of bottom watering for growing seedling were reduced 40.9% and 53.4% in primary and secondary seedbeds as compared with those of conventional plot, respectively.

  • PDF

Year-to- Year Variation of Cold Waters around the Korea Strait

  • Min, Hong-Sik;Kim, Young-Ho;Kim, Cheol-Ho
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.227-234
    • /
    • 2006
  • Year-to-year variation of bottom cold waters around the Korea Strait was investigated based on bottom temperatures measured by submarine telephone cable between Pusan, Korea and Hamada, Japan from 1982 to 1992. The characteristics of bottom temperatures could be divided into three different groups: the Korean side, the middle, and the Japanese side. Temperature drops in summer appeared in all the three regions implying the intrusion of cold waters into the Korea Strait. Significant decreases in the Korean side were observed in 1983, 1986, 1990, 1991, and 1992 when bottom temperatures were high in the middle. In contrast, bottom temperatures significantly decreased in the middle in 1985, 1988, and 1989 when the temperature drops in the Korean side were relatively small. This tendency for a negative relationship was also shown in the second mode of an EOF analysis. In the years when bottom temperatures significantly decrease din the Korean side, the cold water along the east coast of Korea expanded offshore and its temperature was low. On the contrary, cold water in the southern region of the Ulleung Basin developed in the years when bottom temperatures decreased considerably in the middle.

Effects of the Percentages of Yeast, Fermentation Time and Oven Temperature on the Quality Characteristics of Rice Bread (이스트 첨가 수준, 발효 시간 및 오븐 온도에 따른 쌀빵 품질 특성)

  • Kim, Sang Sook;Chung, Hae Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.4
    • /
    • pp.371-378
    • /
    • 2019
  • This paper investigated the effects of the percentages of yeast and fermentation time as well as the top and bottom temperature of oven on the baking properties of rice bread. The specific volume of the dough decreased as the amount of added yeast and fermentation time increased. When 1.5% yeast was added at 60 min of fermentation time, the shape of the rice bread showed the largest volume, high appearance and a round shape. The top and bottom temperature of the oven on the baking characteristics of rice bread were affected by the baking time. When the top and bottom temperature of the oven at 200 and $140^{\circ}C$, and 200 and $170^{\circ}C$, the baking time was 20 min. When the top and bottom temperature of oven at 140 and $170^{\circ}C$, the baking time was 40 min. When the top and bottom temperature of the oven were 170 and $170^{\circ}C$, the shape of the rice bread indicated the largest volume, high appearance and a round shape. The results of this study revealed that the replacement of rice flour with 1.5% yeast, 60 min of fermentation time, and the top and bottom temperature of oven at $170-170^{\circ}C$ are effective for rice bread.

A Study on Bottom E1ectrode for Ferroelectric Thin Film Capacitors (강유전체 박막 커패시터 하부전극에 관한 연구)

  • 임동건;정세민;최유신;김도영;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.364-368
    • /
    • 1997
  • We have investigated Pt and RuO$_2$as a bottom electrode for a device application of PZT thin film. The bottom electrodes were prepared by using an RF magnetron sputtering method. We studied some of the property influencing factors such as substrate temperature, gas flow rate, and RF power. An oxygen partial pressure from 0 to 50% was investigated. The results show that only Ru metal was grown without supp1ying any O$_2$gas. Both Ru and RuO$_2$phases were formed for O$_2$partial pressure between 10∼40%. A Pure RuO$_2$ phase was obtained with O$_2$partial pressure of 50%. A substrate temperature from room temperature to 400$^{\circ}C$ was investigated with XRD for the film crystallinity examination. The substrate temperature influenced the surface morphology and the resistivity of Pt and RuO$_2$as well as the film crystal structure. From the various considerations, we recommend the substrate temperature of 300$^{\circ}C$ for the bottom electrode growth. Because PZT film growth on top of bottom electrode requires a temperature process higher than 500$^{\circ}C$, bottom electrode properties were investigated as a function of post anneal temperature. As post anneal temperature was increased, the resistivity of Pt and RuO$_2$was decreased. However, almost no change was observed in resistivity for an anneal temperature higher than 700$^{\circ}C$. From the studies on resistivity and surface morphology, we recommend a post anneal temperature less than 600$^{\circ}C$.

  • PDF

Effect of postulated crack location on the pressure-temperature limit curve of reactor pressure vessel

  • Choi, Shinbeom;Surh, Han-Bum;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1681-1688
    • /
    • 2019
  • In accordance with ASME Boiler and Pressure Vessel (B&PV) Code Sec.XI Appendix. G, a postulated crack is located at the beltline of a reactor pressure vessel because the neutron flux at the beltline is higher than elsewhere. This means that the distance between the core and the semi-spherical bottom head is longer than the distance between the core and the cylindrical beltline. However, several Small and Medium sized Reactors have bottom heads with diverse shapes, including dished or semi-elliptical shapes, to satisfy the requirement and performance. So, the aim of this paper is to evaluate the effect of crack location on Pressure-Temperature limit curve. To do this, two types of postulated crack location, such as beltline and semi-elliptical bottom head, were adopted to derive the Pressure-Temperature limit curve. Also, parametric studies for neutron flux, crack shape and so on were performed. As a result, core critical temperature of semi-elliptical bottom head is found to higher than that of beltline even when they have same values of thickness and neutron flux. This result will be useful to enhance the understanding of Pressure-Temperature limit curve.

EFFECT OF TOP END CONDITION OF FUEL BED CONTAINER ON DOWNWARD SMOLDER SPREAD

  • Sato, Kenji;Sakai, Yasuhiro
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.146-153
    • /
    • 1997
  • An experimental study was performed of natural-convection downward smolder spread across a sawdust bed peripherally enclosed with an insulating container, to examine the effect of the open- ing condition at the top end on downward smolder spread. Experiments were conducted by using relatively coarse sawdust and 25-cm-long cylindrical container The variations of temperature profiles along the bed axis with time were determined far different opening conditions and were com-pared with those in smolder spread from open top to open bottom. It was shown that the smolder zone initiated from open top toward closed bottom penetrates the bed with keeping high peak temperature like the case of open top to open bottom spread, although mean spread rate is smaller. This indicates that the downward smolder zone can be sustained stably if sufficient air or oxygen Is supplied from the back of it by natural convection even if upward draft entering from the bottom of the bed is absent. When the top end was partially closed by mounting a cover after stable smolder spread had begun from open top toward open bottom, the temperature at the peak decreased more than 200 K and the smolder zone became to spread with thickening residue. In this case, the shape of temperature profiles continuously changed or decayed until end-effect at the open bottom end enhanced the reaction. The temperature at the shrunk peak, free from the end-effect, was almost identical with the temperature at the exothermic oxidative-degradation zone in smolder spread from open top to open bottom. from these results, it can be inferred for natural-convection downward smolder spread that the oxidation reaction of the char is very sensitive to the oxygen supply by natural convection in the space above the smolder zone, and that the top end opening condition strongly alters the completeness of reactions, structure, and behavior of the smolder zone.

  • PDF

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

An Experimental study on the Freezing Phenomena of Saturated Porous Media in a Rectangular Cavity (장방형내 함수 다공성 물질의 동결거동에 관한 실험적 연구)

  • Kim, B.C.;Kim, J.I.;Kim, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.386-394
    • /
    • 1991
  • Freezing of saturated porous media contained in a rectangular cavity has been studied experimentally. Water and different diameter glass beads consitituted the liquid and porous media. Solidification front shape, the effects of bead diameter and initial liquid temperature was investigated. When the hot wall temperature was below $4^{\circ}C$, the freezing rate was higher at the top than at the bottom due to the density inversion, but with increasing the hot wall temperature the freezing rate at the top was effected by the liquid temperature and was lower than at the bottom. With increasing the bead diameter, the difference of freezing rate between top and bottom was increased and depends on thermal conductivity. When the liquid temperature was low in the beginning, the freezing rate was high, but with increasing the time almost the same with those of high temperature liquid.

  • PDF

An Experiment Study on Manufacturing process of BIPV Module (BIPV모듈의 제조공정에 관한 실험적 연구)

  • An, Youngsub;Kim, Sungtae;Lee, Sungjin;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.54-54
    • /
    • 2010
  • In this study, the correlation between temperature and the gel-content of the module were analyzed through experiments. Amorphous thin-film solar cell used in this experiment has a visible light transmission performance of 10%. In addition, ethylene vinyl acetate(EVA) film and the clear glass have been used for the modulation. The most important process is to laminate the module in the manufacturing process of BIPV(Building integrated photovoltaic) module. Setting parameters of laminator in the lamination process are temperature, pressure and time. Setting conditions significantly affect the durability, watertightness and airtightness of module. The most important factor in the setting parameters is temperature to satisfy the gel-contents. The bottom and top surface temperature of module are measured according to setting temperature of laminator. The results showed $145^{\circ}C$ of max temperature of the bottom surface and $128^{\circ}C$ of max temperature of top surface on the module at the temperature condition of $160^{\circ}C$. And at the another temperature condition of laminator with $150^{\circ}C$, the max temperature do bottom and top are $117^{\circ}C$ and $134^{\circ}C$ respectively. The temperature difference between bottom and top of the module occurred, that is because heat has been blocked by the clear glass and the bottom of the cells absorb the heat from the laminator. In this particular, the temperature difference between setting temperature of the laminator and the surface temperature of the module showed $15^{\circ}C$, because the heat of laminator plate is transferred to the surface of the module and heat is lost at this time. As a results, gel-content showed 94.8%, 88.7% and 81.7% respectively according to the setting temperature $155^{\circ}C$, $150^{\circ}C$ and $145^{\circ}C$ of the laminator. In conclusion, the surface temperature of module increases, the gel-contents is relatively increased. But if the laminator plate temperature is too high, the gel-content shows rather decline in performance. Furthermore, the temperature difference between setting temperature and the surface temperature of the module is affected by laminating machine itself and the temperature of module should be considered when setting the laminator.

  • PDF