• Title/Summary/Keyword: bottom sediment

Search Result 451, Processing Time 0.031 seconds

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

Burial Age and Flooding-origin Characteristics of Coastal Deposits at Gwangseungri, Gochanggun, Korea (고창군 광승리 연안 퇴적층의 퇴적 시기와 범람 기원 특성)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.222-235
    • /
    • 2015
  • Samples were collected from both places including the coastal area within the height of 5 m above the mean sea level (msl) (DH) and the top of the coastal terrace of 10-15 m msl (KS) high in Gwangseungri, Gochanggun, Korea. To find the origin of the deposit in the coastal area, granulometric analysis and geochemical analysis were performed. The result showed that the DH samples were originated from the reddish soils overlaying weathered bedrock which presented gradual change of chemical composition from the bottom toward the top. Clay minerals were found from the DH samples. These results concluded that the DH samples were found as in-situ weathered materials. The KS samples were originated from the soil layer covering gravel layer at the foot slope of the hill along the coast. The KS samples contained different chemical compositions from the DH. It is inferred that some of this layer was disturbed or experienced the influx of foreign material. The particle size of the KS samples was different from those found on the beach. The particle size of lower parts of KS site was finer than that on the beach, but the particle size of middle part of the site was coarser than that on the beach. The sorting of the KS site was poorer than that on the beach. Thus, it is inferred that some parts of the layer were formed by short-lived high energy event rather than sustained and continuous action of tidal currents and/or waves. Analysis using an optically stimulated luminescence (OSL) method showed that the burial age of samples from KS site were found 0.65-0.71 ka. Though the characteristics of the sediment layer and forming event in this area should be further studied, it can be inferred that this sedimentary layer formed by coastal flooding with storm.

Bathymetric changes off the sea south of Jinwoo-do Island in the Nakdong River estuary (낙동강 하구역 진우도 남측 해역의 해저지형 변화)

  • Park, Bong-woon;Kim, Sung-bo;Kim, Jae-joong;Kim, Ki-cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • Bathymetric changes were studied in the southern sea off the Jinwoo-do Island, which is one of the deltaic barrier islands surrounding the Nakddong river estuary. In this study, 16 bathymetry data sets were obtained from June 2006 to April 2015. Two narrow channels, the one lying between Jinwoo-do and Shinja-do, and the other one lying between Nulcha-do and Jinwoo-do extended into the eastern and western parts of the study area, respectively. The eastern extension of the channel contained a passage of mixed estuarine waters of seawater and river water discharged from the Nakdong river barrier and the west Nakdong River. The western channel connected the Nakdong River estuary with the Busan New Port via a connecting pier. Total volumetric changes of sediments in study area and discharge flow of the Nakdong river barrier were analyzed. Bottom topographical changes occurred mainly in the eastern extension of the channel. These changes were initially characterized by gradual erosion or deposition followed by rapid restoration. The total volume of sediment gradually increased from June 2006 to March 2013, but experienced a sudden decrease in October 2013 because of typhoon Danas. Few fluctuations were observed from October 2013 to April 2015. Analysis of the cross-sectional bathymetry of the north-south direction showed that the deepest point of the eastern channel moved 100-130 m westward and 200 m northward between June 2006 and April 2015.

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF

Comparison of Vane-shear Strength Measured by Different Methods in Deep-sea Sediments from KODOS area, NE Equatorial Pacific (북동태평양 KODOS지역 심해 퇴적물의 베인 전단강도 측정 방법에 따른 결과 비교)

  • Chi, Sang-Bum;Jung, Hoi-Soo;Kim, Hyun-Sub;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.390-399
    • /
    • 1999
  • Siliceous and calcareous deep-sea core sediments were collected by a multiple corer from the KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific, to compare vane shear strengths measured by two different apparatuses and in different places of on-board and on-land laboratories. The apparatuses were 1) a hand-held vane with four blades of $2.0{\times}2.0$ cm, and 2) a motorized shear vane system with four blades of $1.0{\times}0.88$ attached on a rotational viscometer. Depth profiles of shear strengths of core samples determined by the apparatuses do not show any consistent difference. Also, there is no consistent difference between shear strength values measured on-board and on-land laboratories after storing the core samples for three months in a cold room by a motorized shear vane system. However, there are considerable differences between depth profiles of shear strengths measured at four different points (holes) of a core sample. Moreover, significant differences among the profiles of different tube samples from a multiple corer within a sampling station were observed. Heterogeneity in physical properties of each depth and sediment column, possibly due to bioturbation and bottom current flows, is likely responsible for the differences in the geotechnical properties.

  • PDF

Environmental Characteristics of Natural Habitat of Protothaca jedoensis in Gamak Bay, Korea (가막만 살조개, Protothaca jedoensis 서식지 환경특성)

  • Yoon, Ho-Seop;Choir, Sang-Duk
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • In this study, environmental parameters of natural habitat were measured to find out suitable place for release and improve the productivity of Protothaca jedoensis in Gamak Bay. Water temperature, salinity of the habitat ranged from 5.4 to 27.6 and from 26.5 to $34.5\%_{\circ}$, respectively. Range of pH, DO, COD, Chl-a, T-N and T-P were $7.82{\sim}8.39,\;5.31{\sim}11.28mg/L,\;0.13{\sim}1.38mg/L,\;3.05{\sim}11.55mg/L,\;0.005{\sim}0.180mg/L\;and\;0.007{\sim}0.028mg/L$ respectively. Dominant grain size was fine silt and the IL of sediment was ranged from $0.75{\sim}7.26%$. The water content was $20.16{\sim}53.65%$ and highest value was observed in Baegyado. The COD and AVS in the sediments ranged from $0.53{\sim}8.67mg/g-dry$ and $0.002{\sim}0.113mg/g-dry$ respectively. The bottom condition of Baegyado was higher than other area.

Characteristics of the bottom sediments from the continental shelf of the Korea Strait and some geochemical aspects of the shelf fine-grained sediments (한국 대한해협 대륙붕 표층 퇴적물의 특성과 세립퇴적물의 지구화학적 특성)

  • 박용안;김경렬
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.43-56
    • /
    • 1987
  • A study on sedimentation, geochemical behavior and seismic stratigrapht of the continental shelf sediments along the Korea Strait and a part of south and southeast offshore area of the Korea Peninsula was carried out. In the inner shelf floor with depth ranging up to 80m zonal distribution patterns of mud, sandy silt, and silty sand were observed. In the outer shelf, however, coarse sandy sediments are dominant, and shills and gravels were frequently observed. These observations seem to confirm the Holocene sedimentary processes on the continental shelves off the south, south to east coasts of Korea discussed by Park (1985 and 1986) and Park and Choi (1986). The suface sediments (upper most 5cm thick)from selected 9 stations were analyzed for Al,Mn, Fe,Cr,Ni,Cu,Zn and Pb in order to study geochemical behavior of the sediments in the study area. All data were normalized to Al to com,pensate the size effect of the sediments.In general,inner shelf sediments show slight enrichment compared to the outer shelf sediments.In particular,Pb and Zn show heavy enrichment in most of the sediments.to degrees comparable to those observed at the polluted Kwangyang and Masan Bay sediments.Thus,it is considered that rapid migration or movement of fine-grained sediments in the study area does exist. Three seismic stratigraphic units were analyzed based on the seismic records.The acoustic basement the lower sedimentary deposit(B)and the upper deposit(A)were observed.The strong reflectivity R,in particular, between unit A and B is considered to be an erosinal unconformity during the last Glacial time.

  • PDF

Anisotropy of Turbulence in Vegetated Open-Channel Flows (식생된 개수로 흐름에서의 난류의 비등방성)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.871-883
    • /
    • 2005
  • This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

Temporal and Spatial Fluctuations of Coastal Water Quality and Effect of Small Tide Embankment in the Muan Peninsula of Korea (무안반도 연안수질의 시ㆍ공간적 변동과 소규모 방조제의 영향)

  • Lee Dae-In;Cho Hyeon-Seo;Lee Gyu-Hyung;Lee Moon-Ok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.24-36
    • /
    • 2003
  • In this study, we estimated the seasonal fluctuations of water quality and effect of small tide embankment in coastal water around the Muan Peninsula, which is located in the northern part of Mokpo city, and layer farming ground is spread around there. Some physical and chemical factors were analyzed to characterize water quality from Jan. to Oct. in 1994. The results were as follows: Dissolved oxygen was slightly under saturation in the almost areas of July, and in some bottom layer at ebb tide of October. Distribution of COD showed high values that over 2㎎/L in October and flood tide of April by the discharge of freshwater and resuspension of benthic sediment, which exceeded water quality criteria II. Maximum values of dissolved inorganic nitrogen ware appeared in surface layer during the flood tide of October, while minimum of that showed in surface layer in April. Concentration of dissolved inorganic phosphorus was higher at July than the others, which ranged from 0.24 to 2.08㎍-at/L. Mostly mean values of N/P ratio were lower than 16, it mean that nitrogen is more limiting nutrient than phosphorus for the growth of phytoplankton. The values of eutrophication index were in the range of 0.07~0.81. However, very high values due to increase of COD were estimated near the tide embankment and southern part in relation to tidal current in October. Water quality around tide embankment was suddenly changed worse within a short period after opening the water gate during the rainfall.

  • PDF

Soil Characteristics on the Fluvial Surface in the Basin of Kyeongan-cheon (Stream) (경안천 유역 하성면에 발달한 토양 특성)

  • Kang, Young-Pork;Sin, Kwang-Sig
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.548-556
    • /
    • 2006
  • The purpose of this study is to clarify the relict landform development of fluvial terrace and the soil characteristics occurring on the fluvial deposits. The physico-chemical properties of soil that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated specifically. The horizon of $A_1$ consists of silt loam with reddish-brown color (5YR4/3). Its soil structures is a weak, fine, subangular, and blocky, breaking to granular. The horizon of $B_{1t}\;and\;B_{2t}$ are silt clay with either a yellowish red (5YR5/6), bright red (2.5YR4/6) color. This soil structure is weak, subangular, and blocky, with thin discontinuous bright red (2.5YR4/6) clay cutans and soft manganese concretions. This red soil structure is made on heavy-textures. It is packed compactly with parent materials of high fluvial surface sediments, and usually has a $A_1-B_{1t}-B_{2t}-C$ profile, from top to bottom. In most cases, clay accumulation in the B-horizon and clay cutans on ped surfaces are observed, which means the argillic horizon has formed. The soils derived from fluvial surface deposits are associated with soils. The soils on the high fluvial surface are considered to be a kind of paleo-red soil which were developed by strong desilicification and rubefaction, and strong leaching of bases under warmer bio-climatic condition during the old Pleistocene period. According to these morphological and anlaytical characteristics,geomorphological features and bio-climatic conditions under which the soil have developed on the high terrace sediment indicate that the soil should be classified as paleo-red soils.