• Title/Summary/Keyword: bottom frictional stress

Search Result 12, Processing Time 0.022 seconds

Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths (흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성)

  • Song, Chang Geun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1077-1086
    • /
    • 2014
  • The flood wave generated due to dam break is affected by initial depth upstream since it is related with hydraulic characteristics propagating downstream, and flow resistance stress has influence on the celerity, travel distance, and approaching depth of shock wave in implementing numerical simulation. In this study, a shallow water flow model employing SU/PG scheme was developed and verified by analytic solutions; propagation characteristics of dam break according to flow resistance and initial depth were analyzed. When bottom frictional stress was applied, the flow depth was relatively higher while the travel distance of shock wave was shorter. In the case of Coulomb stress, the flow velocity behind the location of dam break became lower compared with other cases, and showed values between no stress and turbulent stress at the reach of shock wave. The value of Froude number obtained by no frictional stress at the discontinuous boundary was the closest to 1.0 regardless of initial depth. The adaption of Coulomb stress gave more appropriate results compared with turbulent stress at low initial depth. However, as the initial depth became increased, the dominance of flow resistance terms was weakened and the opposite result was observed.

Comparison of an Analytic Solution of Wind-driven Current and all (x-$\sigma$) Numerical Model (취송류의 해석위와 (x-$\sigma$) 수치모형과의 비교)

  • 이종찬;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.208-218
    • /
    • 1992
  • Analytic solutions for the gradient of surface elevation and vertical profiles of velocity driven by the wind stress in the one-dimensional rectangular basin were obtained under the assumption of steady-state. The approach treats the bottom frictional stress $\tau$$_{b}$ as known and includes vertically varying eddy viscosity $textsc{k}$$_{M}$, which is constant, linear and quadratic of water depth. When the $\tau$$_{b}$ is param-terized with surface stress, depth averaged velocity and bottom velocity, the result shows the relation of the no-slip bottom velocity condition and the bottom frictional stress $\tau$$_{b}$. The results of a mode splitted, (x-$\sigma$) coordinate, numerical model were compared with the derived analytic solutions. The comparison was made for the case such that $textsc{k}$$_{M}$ is the constant, linear and quadratic function of water depth. In the case of constant $textsc{k}$$_{M}$, the gradient of surface elevation and vertical profiles of velocity are discussed for a uniform depth, a mild slope and a relatively steep slope. When $textsc{k}$$_{M}$ is a linear and quadratic function of water depth, the vertical structures of velocities are discussed for various $\tau$$_{b}$. The result of the comparison shows that the vertical structure of velocities depends not only on the value of $textsc{k}$$_{M}$ but also on the profile of $textsc{k}$$_{M}$ and bottom stress $\tau$$_{b}$. Model results were in a good agreement with the analytic solutions considered in this study.his study.y.his study.

  • PDF

Flow Induced by the Uniform Motion of Top Plate over the Bottom Plate with Vertical Fin (수직 휜을 갖는 아래 평판 위에서 등속 운동을 하는 위 평판에 의한 유동)

  • Park, Jun-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.877-884
    • /
    • 2001
  • A theoretical analysis is conducted on the Stokes flow in a narrow channel. A vertical fin is mounted on the bottom plate and the flow is induced by uniformly sliding top plate. The governing harmonic equation was solved in the transformed ζ-plane, which is obtained by applying conformal mappings to the physical plane. By using well-known transformation technique, closed-form expressions for velocity and skin frictional stress on the top and bottom plates were obtained.

Seasonal Variation of Volume Transport through the Straits of the East/Japan Sea Viewed from the Island Rule

  • Seung, Young Ho;Han, Soo-Yeon;Lim, Eun-Pyo
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • Among others, a question that has long been unanswered is why the seasonal variation of volume transport is larger in the Soya and Korea/Tsushima Straits than in the Tsugaru Strait. An attempt is made to answer this question in terms of the island rule with friction being taken into account. The problem is idealized as a simple model. The model results indicate that volume transport through a channel is determined not only by the circulation created around the adjacent island but also by those created around the neighboring islands farther away. The latter is due to the presence of bottom friction in the channels. The volume transports through the Korea/Tsushima, Tsugaru and Soya Straits estimated from the model using observed wind data show the general pattern of observed seasonality, although they contain large errors associated with the uncertain frictional parameter employed in the model. The model indicates that the observed seasonality arises essentially from the fact that wind stress curl changes its sign, from negative in the summer to positive in winter, following a large fluctuation of zero-stress curl latitude east of Hokkaido.

Frictional Wave Energy Dissipation Factor on Uniform Sloping Beach (일정경사면에서의 파에너지 바닥마찰손실계수)

  • Yoo, Dong-Hoon;Eum, Ho-Sik;Jang, Moon-Yup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Wave energy is dissipated mainly by friction on the seabed until the waves reach the surf zone. Many researchers have investigated the mechanism of wave friction and the bottom shear stress induced by wave motion at a certain point is now well estimated by introducing the wave friction factor related to the near bed velocity given by linear wave theory. The variation of wave energy or wave height over a long distance can be, however, estimated by an iteration process when the propagation of waves is strongly influenced by bed friction. In the present study simple semi-theoretical equation has been developed to compute the variation of wave height for the condition of wave propagation on a constant beach slope. The ratio of wave height is determined by the product of shoalng factor and wave height friction factor (frictional wave energy dissipation factor). The wave height estimated by the new equation is compared with the wave height estimated by the solution of numerical integration for the condition that the waves propagate on a constant slope.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Tidal asymmetry in the Keum River Estuary (금강하구의 비선형조석)

  • 최병호
    • Water for future
    • /
    • v.21 no.1
    • /
    • pp.87-94
    • /
    • 1988
  • Tidal asymmetry in the Keum River Estuary has been investigated from the observed tides. Despite strong frictional attenuation within the estuary, the $M_4$ tides reach significant amplitude, resulting in strong tidal distortion. The observed asymmetry over the area shows that generally more intense flood flows transport more sediment that do less intense ebb flows of longer duration. This causes filling of the estaury as evidenced by sand flats spreaded over the inner area. The spatial distribution of peak bottom stress associated with the dominant $M_2$ and $M_4$ tides calculated via two-dimensional numerical tidal model suggest that present tidal sedimentation regimemay be altered, sepecially in the approach channel to outer Kunsan Port and downstream part of the dike, due to the construction of barrier.

  • PDF

Tide and Sediment Transport in the Keum River Estuary (사강하구의 조석 및 토사이동)

  • 최병호;강경구;이석우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.31-43
    • /
    • 1989
  • Tidal asymmetry and the associated sediment dynamics in the Keum River Estuary has been investigated from a numerical tidal model. Modeling efforts were focussed on the simulation of large drying sandflat exposed at the mouth of the Estuary and dynamic combination of two-dimensional estuary model and one-dimensional river model. Despite strong frictional attenuation within the estuary, the M4 tides reach significant amplitude, resulting in strong tidal distortion. Model results show that the asymmetry over the area exhibit more intense flood flows transport than do less intense ebb flows of longer duration. This causes filling of the estuary as evidenced by large sandflats spread over the inner area. The spatial distribution of peak bottom stress computed from the tidal model suggest that present tidal sedimentation regime may be altered significantly, especially in the approach channel to outer Kunsan port and downstream part of the dike, due to the construction of cross-channel barrier.

  • PDF

On the Variation of Resistance Components due to Air Bubble Blowing on Bulb Surface of a Ship (구상 선수 주위의 유동과 기포 공급 효과에 관한 실험적 연구)

  • Geun-Tae Yim;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.54-64
    • /
    • 1996
  • It seems that blowing air bubble out of the bulb surface of a ship of flat bottom will reduce the frictional resistance, since wetted area of the hull surface is reduced owing to air bubble staying close to the surface. To as certain this concept, at first, the limiting streamlines around the bow was observed, and local distribution of pressure and shear stress, due to the change of air-blowing position, air supply pressure, and the model speed, was investigated. It was found that the local friction was reduced near the bulb and air-bubble formations also play an important role as a drag component. This paper can be considered as a preliminary study on the drag reduction of conventional ships by the micro-bubble injection.

  • PDF

A Numerical Study on the Wintertime Upwind flow of the Yellow Sen in an Idealized Basin

  • Kyung, Tae-Jung;Park, Chang-Wook;Oh, Im-Sang;Lee, Ho-Jin;Kang, Hyoun-Woo
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.91-107
    • /
    • 2002
  • The wintertime upwind flow in the Yellow Sea has been investigated through a series of two-dimensional numerical experiments in an idealized basin. A total of 10 experiments have been carried out to examine the effects of wind forcing, bottom friction and the presence of oceanic currents sweeping the shelf of the East China Sea. A spatially uniform steady and periodic wind stresses are considered along with comparison of linear and quadratic formulations. The wind-driven flow in the absence of oceanic current has been computed using Proudman open boundary condition (POBC), while the wind-driven current in the presence of oceanic current has been computed using Flather’s radiation condition (FOBC). The oceanic currents to be prescribed at the open boundary have been simulated by specifying uniform sea level gradients across the Taiwan Strait and the eastern ECS shelf, Calculations show that, as seen in Lee et al. (2000), oceanic flow little penetrates into the Yellow Sea in the absence of wind forcing unless a unrealistically low rate of bottom frictional dissipation is assumed. Both steady and time-periodic wind stresses invoke the upwind flow along the central trough of the Yellow Sea, independently of the presence of the oceanic current. The presence of oceanic currents very marginally alters the north-south gradient of the sea surface elevation in the Yellow Sea. Changes in the intensity and direction of the wind-induced mean upwind flow are hardly noticeable in the Yellow Sea but are found to be significant near Cheju Island where the gradient is reduced and therewith contribution of Ekman transport increases. In case of steady wind forcing circulation patterns such as two gyres on the slope sides, a cyclonic gyre on the western slope and an anticyclonic gyre on the eastern slope persist and the upwind flow composes part of the cyclonic gyre in the Yellow Sea. While in case of the time-periodic wind stress the appearance and disappearance of the patterns are repeated according to the time variation of the wind stress and the upwind flow accordingly varies with phase delay, mostly intensifying near the time when the wind forcing is approximately near the middle of the decaying stage.