• Title/Summary/Keyword: bottom cold water of Yellow Sea

Search Result 56, Processing Time 0.027 seconds

Distributional Pattern of Polychaetes in the Benthic Community of the Yellow Sea (황해의 저서군집내에서 다모류의 분포유형)

  • LEE Jae-Hac
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.224-229
    • /
    • 1987
  • The ecological studies of the benthic polychaetes of the Yellow Sea were carried out for five years from August 1982. The emphasis of the research were placed on clarification of the distributional pattern and characteristic species of environmental factors on the polychaete community. Based on the polychaete samples analysed during the study period, it was possible to divide the polychaetes into five ecological groups : 18 warm water, 22 cold water, 20 cosmopolitan, 29 endemic, and 7 amphi-pacific species, Anaitides koreana, Aglaophamus sinensis, Nephtys polyoranchia, Nephtys caeca, Glycera capitata, and Scoloplos armiger seem to be characteristic species of sand bottom, while Haploscoloplos elongatus and Ophelina aulogaster of mud bottom. A total of 6 benthic communities have been recognized from the dominant benthic fauna found. In each benthic communities, dominant and characteristic polychaete species were clarified according to their ecological types. In general, as echinoderms such as Ophiura kinbergi, Amphioplus megapomus, and Luidia quinaria are distributed widely and found in high density, their influence on the distribution of most polychaetes is clearly shown.

  • PDF

Comparison of Community Structure of Fish Larvae in the Northern East China Sea in Normal and El Niño/La Niña Periods (엘리뇨/라니냐와 정상 기간 동중국해 북부해역의 자치어의 군집구조 비교)

  • Yoo, Joon-Taek;Choi, Jung-Hwa;Kim, Jin-Yeong;Kim, Jong-Bin;Choi, Kwang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.907-916
    • /
    • 2013
  • The aim of this study was to compare community structure of larval fish species in the northern East China Sea during normal meteorological conditions in autumn 2009, during the El Ni$\tilde{n}$o period in 2009-2010, and during the La Nina period in 2010. Fifty taxa were recorded during the study period; the most dominant species were Benthosema pterotum and Gobiidae spp. In October 2008 during the normal period, warm water from the Tsushima Warm Current (TWC) intruded more into the surface and middle layers, and cold water affected by the Yellow Sea Cold Water (YSCW) intruded into the bottom layer. In October 2009 during the El Ni$\tilde{n}$o period, intrusion of the China Coastal Water (CCW), which has low salinity (<32.2 psu), was more apparent than intrusion of the TWC or YSCW. In October 2010 during the La Nina period, intrusion of the TWC and CCW was relatively weak, resulting in the lowest temperature and highest salinity observed during the study period in the eastern part of the study area. Hierarchical cluster, one-way ANOSIM (analysis of similarities), and SIMPER (similarity-percentages procedure) analyses provided two main results. First, the abundance of the most dominant larval fish species in autumn of the normal period was greater than that in autumn of the El Ni$\tilde{n}$o/La Nina periods, resulting in a significant difference in ichthyoplankton community structure between the periods. The abundance of Benthosema pterotum increased in the normal period, possibly influenced by the intrusion of cold water from the YSCW; the abundance of species residing in Korean waters (e.g., Gobiidae spp.) probably decreased during the El Ni$\tilde{n}$o/La Nina periods. The second finding was that the abundance of subtropical larval fish in autumn of the normal period was generally larger than that during autumn of the El Ni$\tilde{n}$o/La Nina periods. This could have been induced by the stronger intrusion of warm water from the TWC during the normal period. Although differences in oceanographic conditions between El Ni$\tilde{n}$o and La Nina periods were observed, the differences in ichthyoplankton community structure between the two periods were not significant.

Temporal and Spatial Variation of SST Related to the Path of Typhoons around the Korean Waters in Summer (태풍 통과에 따른 한국 연근해 수온 변동)

  • 서영상;김동순;김복기;이동인;김영섭;김일곤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.627-636
    • /
    • 2002
  • While typhoons were passing by the coastal and offshore waters around the Korean peninsula, the variations of the sea surface temperature (SST) were studied. To study on the variation, the data related to the 22 typhoons among 346 typhoons which occurred in the western Pacific during 1990∼1999, daily measured field SSTs at coastal and offshore, and imageries from advanced very high resolution radiometer on NOAA satellite during 1990∼1999 were used. The average variations of the SSTs were -0.9℃ at coastal waters and -2℃ at offshore around the Korean peninsula while the typhoons were passing by. In very near coastal waters from the land, the SST was not changed because the bottom depth of the coastal waters was shallower than the depth of thermalcline, while the typhoon was passing. The temporal and spatial variation of SSTs at coastal waters in summer were depended on the various types of the typhoons'paths which were passing through the Korean peninsula. When a typhoon passed by the western parts including the Yellow Sea of the Korean peninsula upwelling cold water occurred along the eastern coastal waters of the peninsula. The reason was estimated with the typhoon that was as very strong wind which blew from south toward north direction along the eastern shore of the peninsula, led to the Ekman transport from near the eastern coastal area toward the offshore. While cold water was occurring in the eastern coast, a typhoon passed over the coastal area, the cold water disappeared. The reason was estimated that the cold water was mixed up with the surrounding warm water by the effect of the typhoon. While a cold water was occurring in the eastern coast, a typhoon passed by the offshore of the eastern coast, there were the increasing of the SST as well as the disappearing of the cold water. While a typhoon was passing by the offshore of the eastern coast, the cold water which resulted from the strong tidal current in the western coast of the peninsula was horizontally spread from the onshore to the offshore. We think that the typhoon played the role of the very strong wind which was blowing from north toward south. Therefore, the Ekman transport occurred from the onshore toward the offshore of the western coast in the Korean peninsula.

Distribution of Anchovy Eggs and Larvae off the Western and Southern Coasts of Korea (한국남해 및 서해 연안해역에서의 멸치난치어의 분포)

  • KIM Jin Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.401-409
    • /
    • 1983
  • The distribution of anchovy eggs and larvae was studied using the ichthyoplankton samples and oceanographic data collected in the western and southern waters of Korea over the period of April through June in 1981 and 1982. Three water masses, the Tsushima Warm Current, the South Korean Coatal Water and the Yellow Sea Bottom Cold Water, are found to exert extensive influences of the distribution of anchovy eggs and larvae. The Tsushima Warm Current contacts with the South Korean Coastal Water to produce a coastal front between Cheju Island and Tsushima Island in the southern waters of Korea. Off the west coast of Korea, a coastal front is also formed running parallel with the western coast-line of Korea in the area between the Yellow Sea Bottom Cold Water and the extended part of the South Korean Coastal Water. In the southern waters of Korea anchovy eggs were found chiefly in the coastal waters inside the front, and larvae appeared to both sides on the front. The distribution of anchovy eggs and larvae off the west coast of Korea, however, was limited largely to the coastal waters of more than $12^{\circ}C$ in temperature. In the southern waters of Korea prelarvae appeared in the coastal area, and postlarvae in the offshore area. While in the western waters of Korea prelarvae were found in the southern part of the waters, and postlarvae in the northern part. Anchovy eggs and larvae were distributed in the considerably limited area of the coastal waters off the south coast of Korea in 1981 when the temperature gradient of the coastal front was sharper than in 1982.

  • PDF

The Marine Environment and Dinoflagellates Cysts in the Southwestern Sea of Korea (한국남서해역의 해양환경과 와편모조류 시스트 분포 특성)

  • Park, Jong-Sick;Yoon, Yang-Ho;Noh, Il-Hyeon;Soh, Ho-Young;Shin, Hyeon-Ho
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • A field survey for dinoflagellate cysts was carried out from May 2000 to November 2002 for the Southwest Sea of Korea. A total dinoflagellate cysts identified were 33 species, which belonged to 17 genera, 31 species, and 2 unidentified species. A cysts density were 16-1,501 cysts-gdry$^{-1}$. The dominant species of dinoflagellate cysts in the Southwestern Sea of Korea were Spiniferites bulloideus and Scrippsiella trochoidea, which are autotrophic species. To investigate the environmental characteristics of the Southwestern Sea of Korea using the dinoflagellate cysts, a principal component analysis (PCA) was conducted using the data collected from a total of 51 stations. From the score distribution map by the PCA, the Southwestern Sea of Korea was largely divided into three regions according to the first primary component and the second primary component. In other words, Group 1 was the western sea area of Mokpo and Jindo, Group 2 was the outer sea area of the South Sea, and Group 3 was the coastal areas of the South Sea around the Archipelago. It was found that this division of sea area was influenced by effects of the sea environment of the coastal areas of Korea. The coastal areas of Mokpo and Jindo that belong to Group 1 were affected by the cold Yellow Sea water. The outer sea area of the central parts of the South Sea that belong to Group 2, which is the boundary between the Southern coastal water of Korea and the Tsushima warm water, was subject to the formation of temperature fronts throughout the year, while Group 3 was affected by the coastal waters of Korea. It was also found that this division was in close relationship with the distribution of sediment facies in the bottom layer. From the above results, the environmental factors that influence the cyst distribution in he Southwestern Sea of Korea were found to include the eutrophication status of the sea area, the physical characteristics of the sea environment such as the flow of sea current and fronts, the sediment facies in the bottom layer, and the appearance volume of motile cells.

On the Early Life History of Gunnel (Enedrias fangi) (흰베도라치(Enedrias fangi)의 초기생활사에 관하여)

  • Yoo, Jae-Myung; Kim, Woong-Seo; Kim, Sung;Lee, Eun-Kyung
    • Korean Journal of Ichthyology
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • The larval fish, which had been previously identified or classified as Enedrias (Pholis) nebulosus, Enedrias spp., Pholis taczanowskii, and unidentified species belonging to Protosalanginae, were revealed as that of a gunnel, Enedrias fangi. This species has been known as a cold water species mainly caught in the Yellow Sea. Larval E. fangi showed peak abundances in the coastal waters off Chonlla Province in March, Chungnam Province in April, and Kyunggi Province in May and June. The primary spawning season of E. fangi seemed to be winter (November to January), and the eggs hatched after 60 days from spawning. The average growth rate of larval fish was about 0.33mm/day. The larval fish of 40mm in body length began to move to the bottom, and stayed in the bottom cold water mass when their body length was greater than 60-70mm. The average annual catches of larval E. fangi from 1985 to 1991 were 5,000M/T in the Yellow Sea, which were more than 99 % of the total gunnel catches around Korean waters. The peak season of catches was from March or April to July in Chungnam Province, and from May to July in Kyunggi Province.

  • PDF

Distribution of Indicator Species of Copepods and Chaetognaths in the Southeastern Area of the Yellow Sea and Their Relationship to the Characteristics of Water Masses (황해 동남 해역의 수괴지표성 요각류 및 모악류의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;LEE Byung-Don;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 1992
  • Distribution of indicator species of copepods and chaetognaths were studied as an indicator species of water mass in the southeastern area of the Yellow Sea. Undinula darwini, Lucicutia flavicornis, Pleuromamma gracilis, Euchaeta resselli, Euchaeta plane and Sagitta enflata were found to be reliable indicator species for determining warm water mass. Of these species, E. plana and E. rusrelli have a weak tolerance on the low temperature. Sagitta crassa was indicator species of neritic waters; Sagitta bedoti was that of mixing waters. Centropages abdominalis represented neritic cold waters. In February, U darwini, L. flavicornis, P. gracilis, E. russelli, E. plana and S. enflata occurred in the western waters of Cheju-Do where warm waters over $14^{\circ}C$ occupied. Centropages abdominalis occurred in the northern area beyond Chindo with water temperature less than $10^{\circ}C$. E. plana, E. russelli and S. bedoti were found at the regions between Cheju-Do and Chindo where the water temperature was $12- 14^{\circ}C$ corresponding to the mixing waters. Based on cluster analysis and T-S diagram in February three different water masses were identified from the south to the north. In August, water masses were analyzed at two different layers, 0-20m and 20m- bottom layers, separated by bhermocline depth. In 0-20m layer, E. plana and E. russelli were found from the western waters of Cheju-Do to Daehuksando. In 20m- bottom layer, E. russelli and E plena occurred at the northwestern waters of Cheju-Do with the water temperature warmer than $12^{\circ}C.\;C.$ abdominalis was found at the northern area beyond Chindo. Based on the cluster analysis and T-S diagram in August three different water masses at 0-20m and 20m-bottom layers were identified from the coast to the offshore. C. abdominalis was found at the adjacent water of Chindo at 0-20m layer and the northern area beyond Chindo at 20m~bottom layer. This fact suggested that the cold water mass existed at tile adjacent waters of Chindo in summer.

  • PDF

Seasonal Variations of Water Quality in the Coastal Sea of Jungmun Resort Complex in Jeiu Island (제주도 중문관광단지 연안해역 수질의 계절변동)

  • Jang Seung-Min;Choi Young-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.3-18
    • /
    • 2002
  • This study has been carried out to find the water Quality in coastal sea of fungmun area, southern Jeju Island. In-situ observations and water sampling had been made every month from July 1997 to June 2000. The distributions of water temperature and salinity over the study area have been 13.8~27.0℃ and 30.0~34.7‰, respectively. Salinity is showed low salinity from June to September (rainy season) because of rain. Tsushima Warm Waters (TWW) as ≥15℃ and ≥34‰ influence the adjacent sea around Jeju Island all year round. Yangtse Coastal Waters (YCW) influence the surface layer around Jeju from June to September and so strong stratification (termocline, halocline) resulted at the depth of between 20~30m at outer-sea. However the stratification does not happen even in summer at inner-sea, which seem to be caused due to vertical mixing by wind, waves and tides. A water mass of high value of water temperature and salinity (respectively 14.1~17.7℃, 33.9~34.1‰) stayed at the lower layer in outer-sea all the year round. It is probably formed by mixing between TWW and YSBCW(Yellow Sea Bottom Cold Water). The mean value of DO was the lowest in summer and the highest in winter. COD and TH were the highest in summer and the lowest in winter. However, TP showed the lowest value in summer season, because the mean value of N/P ratio was over 16. The mean of N/P ratio was under 16 in other seasons. The phosphate would be a limiting factor in the growth of phytoplanHon in summer. Nitrate would be a limiting factor in other seasons. Distribution of chlorophyll a did not show any seasonal change in the study period, but especially increased during April and May in the first year(1998) and the second year(1999) all over the study area, which suggested that phytoplankton inhabitation distributed widely in the study area. The space averaged values were the highest for TIN in rainy season and lower for TP in rainy season than in other seasons. It suggests that river runoff influences the inner-sea.

  • PDF

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.

Faunal Analysis and Oceanic Environment of the Recent Benthonic Foraminifera from the West and South Sea of korea (한국 서남해에서 산출된 현생저서 유공충의 동물군 분석 및 해양환경 연구)

  • CHEONG, HAE-KYUNG;PAIK, KWANG-HO;PARK, BYONG-KWON
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.123-136
    • /
    • 1992
  • As a result of faunal analysis on 50 bottom samples bearing a total of 183 species of the Recent benthonic foraminifers from the West and South Sea of korea, five bioassociations (groups of species) and five biotopes (groups of samples) were discriminated. From the areal distribution of biotopes in combination with bioassociations and the available ecological data of foraminiferal species, five biofacies are recognized: (1) Southern Inner Shelf Biofacies; (2) Southern Coast Biofacies; (3) Northern Middle Shelf Biofacies; (4) Central Middle Shelf Biofacies; and (5) Southern Outer Shelf and Upper Slope Biofacies. The biofacies are defined by a group of sampling stations containing a diagnostic species association and can be related to the major current pasterns and water masses in the West and South Sea of Korea: Southern Inner Shelf Biofacies is related to the Coastal Waters and drainage from China; Southern Coast Biofacies is related to the Coastal Waters and drainage from Korea; Northern Middle Shelf Biofacies is related to the Coastal Waters and Yellow Sea Cold Water, Central Middle Shelf Biofacies is related to the Yellow Sea Warm Current; and Southern Outer Shelf and Upper Slope Biofacies is related to the Tsushima Warm Current.

  • PDF