• Title/Summary/Keyword: boron-doped

Search Result 226, Processing Time 0.028 seconds

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

Selective electrochemical detection effect of serotonin in blood by using boron doped diamond rotating disk electrode (Boron doped diamond RDE에 의한 혈액내의 serotonin의 전기화학적 선택적 검출 효과)

  • Hwang, Jin-Hee;Cho, Eun-In;Park, Soo-Gil;Okajima, Takeyoshi;Ohsaka, Takeo;Fujishima, Akira
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.930-933
    • /
    • 2003
  • The electrochemical oxidation of ascorbic acid(AA), serotonin(StT) and epinephrine(EP) have been performed ae poly N,N-dimethylanliline(PDMA) film coated diamond electrode. This cationic polymer film is electrochemically deposited on boron-doped diamond electrode surface. Unlike the bard electrode, the polyaer film-coated diamond electrode can well separate the oxidation potential of AA by 330mV. Thus this electrode can be successfully used for the simultaneoud detection of both species. Increases in the concentration of AA donot affect the reponse of EP and ST.

  • PDF

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

New Transparent Conducting B-doped ZnO Films by Liquid Source Misted Chemical Deposition Method (LSMCD 장비를 이용 Boron 도핑 ZnO 박막제조 및 특성평가)

  • Kim, Gil-Ho;Woo, Seong-Ihl;Bang, Jung-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.307-308
    • /
    • 2008
  • Zinc oxide is a direct band gap wurtzite-type semiconductor with band gap energy of 3.37eV at room temperature. the n-type doped ZnO oxides, B doped ZnO (BZO) is widely studied in TCOs materials as it shows good electrical, optical, and luminescent properties. we focused on the fabrication of B doped ZnO films with glass substrate using the LSMCD at low temperature. And Novel boron-doped ZnO thin films were deposited and characterized from the structural, optical, electrical point of view. The structure, morphology, and optical properties of the films were studied as a function of by employing the XRD, SEM, Hall system and micro Raman system.

  • PDF

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

Investigations of the Boron Diffusion Process for n-type Mono-Crystalline Silicon Substrates and Ni/Cu Plated Solar Cell Fabrication

  • Lee, Sunyong;Rehman, Atteq ur;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.147-151
    • /
    • 2014
  • A boron doping process using a boron tri-bromide ($BBr_3$) as a boron source was applied to form a $p^+$ emitter layer on an n-type mono-crystalline CZ substrate. Nitrogen ($N_2$) gas as an additive of the diffusion process was varied in order to study the variations in sheet resistance and the uniformity of doped layer. The flow rate of $N_2$ gas flow was changed in the range 3 slm~10 slm. The sheet resistance uniformity however was found to be variable with the variation of the $N_2$ flow rate. The optimal flow rate for $N_2$ gas was found to be 4 slm, resulting in a sheet resistance value of $50{\Omega}/sq$ and having a uniformity of less than 10%. The process temperature was also varied in order to study its influence on the sheet resistance and minority carrier lifetimes. A higher lifetime value of $1727.72{\mu}s$ was achieved for the emitter having $51.74{\Omega}/sq$ sheet resistances. The thickness of the boron rich layer (BRL) was found to increase with the increase in the process temperature and a decrease in the sheet resistance was observed with the increase in the process temperature. Furthermore, a passivated emitter solar cell (PESC) type solar cell structure comprised of a boron doped emitter and phosphorus doped back surface field (BSF) having Ni/Cu contacts yielding 15.32% efficiency is fabricated.

Reverse annealing of boron doped polycrystalline silicon

  • Jin, Beop-Jong;Hong, Won-Eui;Lim, Jung-Yoon;Kim, Deok-Hoi;Uemoto, Tstomu;Kim, Chi-Woo;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1277-1280
    • /
    • 2007
  • Isothermal activation annealing was carried out using boron doped SLS poly-using an RTA system. We observed different behavior of reverse annealing depending on the implantation conditions.

  • PDF

Suppression of misfit dislocations in heavily boron-doped silicon layers for micro-machining (마이크로 머시닝을 위한 고농도로 붕소가 도핑된 실리콘 층의 부정합 전위의 억제)

  • 이호준;김하수;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.96-113
    • /
    • 1996
  • It has been found that the misfit dislocations in heavily boron-doped layers originate from wafer edges. Moreover, the propagation of the misfit dislocation into a heavily boron-doped region can be suppressed by placing a surrounding undoped region. Using a surrounding undoped region the disloction-free heavily boron-deoped silicon membranes have been fabricated. The measured surface roughness, fracture strength, and residual tensile stress of the membrane are 20.angs. peak-to-peak, 1.39${\times}$10$^{10}$ and 2.7${\times}$10$^{9}$dyn/cm$^{2}$, while those of the conventional heavily boron-doped silicon membrane with high density of misfit dislocations are 500 peak-to-peak, 8.27${\times}$10$^{9}$ and 9.3${\times}$10$^{8}$dyn/cm$^{2}$ respectively. The differences between these two membranes are due to the misfit dislocations. Young's modulus has been extracted as 1.45${\times}$10$^{12}$dyn/cm$^{2}$ for both membranes. Also, the effective lattice constant of heavily boron-doped silicon, the in-plane lattice constant of the conventional membrane, and the density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as 5.424.angs. 5.426.angs. and 2.3${\times}$10$^{4}$/cm for the average boron concentration of 1.3${\times}$10$^{20}$/cm$^{-23}$ cm$^{3}$/atom. Without any buffer layers, a disloction-free lightly boron-doped epitaxial layer with good crsytalline quality has been directly grown on the dislocation-free heavily boron-doped silicon layer. X-ray diffraction analysis revealed that the epitaxial silicon has good crystallinity, similar to that grown on lightly doped silicon substrate. The leakage current of the n+/p gated diode fabricated in the epitaxial silicon has been measured to be 0.6nA/cm$^{2}$ at the reverse bias of 5V.

  • PDF