• Title/Summary/Keyword: boron-doped

Search Result 226, Processing Time 0.025 seconds

An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells (광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석)

  • Kim, Soo Min;Bae, Soohyun;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Characteristic of wastewater treatment using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 폐수처리특성)

  • Lee, Eun-Ju;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.795-798
    • /
    • 2003
  • Toxic organics are of great environmental concern primarily because they are toxic to mammals and birds, and are relatively soluble in water to contaminate surface water and groundwater. In this study, the decomposition of phenol, a widely used organic, in aqueous solutions by Boron doped diamond(BDD) electrode was examined. Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond (BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work. we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte. Decomposition of phenol concentration in the reaction solution by photolytic ozonation( $UV/O_3$) was analyzed by HPLC epuipped with a UV detector.

  • PDF

The Gettering Effect of Boron Doped n-type Monocrystalline Silicon Wafer by In-situ Wet and Dry Oxidation

  • Jo, Yeong-Jun;Yun, Ji-Su;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.429-429
    • /
    • 2012
  • To investigate the gettering effect of B-doped n-type monocrystalline silicon wafer, we made the p-n junction by diffusing boron into n-type monocrystalline Si substrate and then oxidized the boron doped n-type monocrystalline silicon wafer by in-situ wet and dry oxidation. After oxidation, the minority carrier lifetime was measured by using microwave photoconductance and the sheet resistance by 4-point probe, respectively. The junction depth was analyzed by Secondary Ion Mass Spectrometry (SIMS). Boron diffusion reduced the metal impurities in the bulk of silicon wafer and increased the minority carrier lifetime. In the case of wet oxidation, the sheet resistance value of ${\sim}46{\Omega}/{\Box}$ was obtained at $900^{\circ}C$, depostion time 50 min, and drive-in time 10 min. Uniformity was ~7% at $925^{\circ}C$, deposition time 30 min, and drive-in time 10 min. Finally, the minority carrier lifetime was shown to be increased from $3.3{\mu}s$ for bare wafer to $21.6{\mu}s$ for $900^{\circ}C$, deposition 40 min, and drive-in 10 min condition. In the case of dry oxidation, for the condition of 50 min deposition, 10 min drive-in, and O2 flow of 2000 SCCM, the minority carrier lifetime of 16.3us, the sheet resistance of ${\sim}48{\Omega}/{\Box}$, and uniformity of 2% were measured.

  • PDF

Effects of Boron Concentration in ZnO:Al Seed Films on the Growth and Properties of ZnO Nanorods (ZnO:Al 시드 막의 보론 농도가 ZnO 나노로드의 성장 및 특성에 미치는 영향)

  • Ma, Tae-Young;Park, Ki-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1488-1493
    • /
    • 2017
  • Boron-doped ZnO:Al films were deposited by rf magnetron sputtering. The structural and optical property variations of the films with the boron amounts were studied. ZnO nanorods were grown on $SiO_2/Si$ wafers and glass by a hydrothermal method. ~50 nm-thick boron-doped ZnO:Al films were deposited on the substrates as seed layers. The mixed solution of zinc nitrate hexahydrate and hexamethylenetetramine in DI water was used as a precursor for ZnO nanorods. The concentration of zinc nitrate hexahydrate and that of hexamethylenetetramine were 0.05 mol, respectively. ZnO nanorods were grown at $90^{\circ}C$ for 2 hours. X-ray diffraction was conducted to observe the crystallinity of ZnO nanorods. A field emission scanning electron microscope was employed to study the morphology of nanorods. Optical transmittance was measured by a UV-Vis spectrophotometer, and photoluminescence was carried out with 266 nm light. The ZnO nanorods grown on the 0.5 wt% boron-doped ZnO seed layer showed the best crystallinity.

Fabrication of p-type FinFETs with a 20 nm Gate Length using Boron Solid Phase Diffusion Process

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the p-type FinFETs with a 20 nm gate length by solid-phase-diffusion (SPD) process was developed. Using the poly-boron-films (PBF) as a novel diffusion source of boron and the rapid thermal annealing (RTA), the p-type sourcedrain extensions of the FinFET devices with a threedimensional structure were doped. The junction properties of boron doped regions were investigated by using the $p^+-n$ junction diodes which showed excellent electrical characteristics. Single channel and multi-channel p-type FinFET devices with a gate length of 20-100 nm was fabricated by boron diffusion process using PBF and revealed superior device scalability.

Photocatalytic Degradation of Quinol and Blue FFS Acid Using TiO2 and Doped TiO2

  • Padmini., E.;Prakash, Singh K.;Miranda, Lima Rose
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.332-335
    • /
    • 2010
  • The photodegradation of the model compounds Quinol, an aromatic organic compound and Acid blue FFS, an acid dye of chemical class Triphenylmethane was studied by using illumination with UV lamp of light intensity 250W. $TiO_2$ and $TiO_2$ doped with Boron and Nitrogen was used as catalyst. The sol-gel method was followed with titanium isopropoxide as precursor and doping was done using Boron and Nitrogen. In photocatalytic degradation, $TiO_2$ and doped $TiO_2$ dosage, UV illumination time and initial concentration of the compounds were changed and examined in order to determine the optimal experimental conditions. Operational time was optimized for 360 min. The optimum dosage of $TiO_2$ and BN doped $TiO_2$ was obtained to be 2 $mgL^{-1}$ and 2.5 $mgL^{-1}$ respectively. Maximum degradation % for quinol and Blue FFS acid dye was 78 and 95 respectively, at the optimum dosage of BN-doped $TiO_2$ catalyst. It was 10 and 4% higher than when undoped $TiO_2$ catalyst was used.

Oxygen Transport in Highly Boron Doped Silicon Melt

  • Terashima, K.;Abe, K.;Maeda, S.;Nakanishi, H.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.207-209
    • /
    • 1997
  • Influences of boron addition on the oxygen solubiligy in silicon melt and the amount of evaporation loss from the melt surface were investigated. It has been found the oxygen concentration increases from 2${\times}$1018 to 4${\times}$1018 atoms/㎤. The amount of evaporation loss was found to vary widely depending on the melt temperature. The amount of SiO evaporating form boron doped (∼102121 atoms/㎤) silicon melt at 1550$^{\circ}C$ is about twice as much as the value of non-doped melt.

  • PDF

Detection of Bio-chemical by Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 생체화학물질의 검출)

  • Lee, Eun-Ju;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.167-169
    • /
    • 2002
  • Selective, highly stable determination of serotonin was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and $B_2O_3$ was dissolved in acetone/methanol(9:1) mixture solution so that the B/C weight ratio ca. $10^4ppm$. Serotonin is a kind of indoleamines, which secreted from adrenal marrow cells. The serious problem to detection of serotonin is the interference phenomena of electroactive constituent, including AA. In this study, electrochemical treatment of HDD was carried out to discriminate between serotonin and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of serotonin was unchanged.

  • PDF

Ozone Generation Effect and application using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 오존 발생의 효과 및 응용)

  • Pi, Young-Min;Fujisima, Akira;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.170-172
    • /
    • 2002
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond(BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work, we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

Electrochemical detection effect of hormone in body by using polymer coated boron doped diamond electrode (고분자 막이 코팅된 Boron doped diamond 전극에 의한 호르몬의 전기화학적 검출 효과)

  • Hwang, Jin-Hee;Cho, Eun-In;Park, Soo-Gil;Okajima, Takeyoshi;Ohsaka, Takeo;Fujishima, Akira
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.611-614
    • /
    • 2003
  • The electrochemical oxidation of ascorbic acid(AA), serotonin(SE) and epinephrine(EP) have been performed at poly N,N-dimethylaniline(PDMA) film coated diamond electrode. This cationic polymer film is electrochemically deposited on boron-doped diamond electrode surface. Unlike the bard electrode, the polymer film-coated diamond electrode can well separate the oxidation potential of AA by 200mV. Thus this electrode can be successfully used for the simultaneoud detection of both species. Increases in the concentration of AA do not affect the reponse of EP and SE.

  • PDF