• Title/Summary/Keyword: boron effect

Search Result 387, Processing Time 0.025 seconds

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Fire Risk of Wood Treated With Boron Compounds by Combustion Test (연소시험에 의한 붕소 화합물 처리 목재의 화재위험성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • Experiments on the combustion characteristics of untreated wood specimens and also treated ones with boric acid and ammonium pentaborate were carried out using a cone calorimeter according to ISO 5660-1 standard. As a result, comparing to untreated specimen, the fire performance index (FPI) of the specimens treated with boron compounds increased by 1.2 to 2.1 times and the fire growth index (FGI) increased by 1.6 to 8.4%. Also, total smoke release rate (TSR) was 9.0 to 28.3% lower than that of the untreated specimen. It is understood that the test specimens treated with the boron compound produces a carbonized layer with a flame retarding effect. The highest CO concentration, 0.01112%, for the untreated specimen was observed at 418 s, but the specimens treated with boron compound decreased 13.2 to 37.5% compared to untreated specimen. Therefore, wood treated with boron compounds is expected to have lower fire hazards and risks.

Effect of CaF2 Addition on the Crystallinity of Hexagonal Boron Nitride Nanoparticles (육방정 질화붕소 나노입자의 결정성에 미치는 불화칼슘 첨가의 영향)

  • Jung, Jae-Yong;Kim, Yang-Do;Kim, Young-Kuk
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.915-920
    • /
    • 2018
  • With the development of modern microelectronics technologies, the power density of electronic devices is rapidly increasing, due to the miniaturization or integration of device elements which operate at high frequency, high power conditions. Resulting thermal problems are known to cause power leakage, device failure and deteriorated performance. To relieve heat accumulation at the interface between chips and heat sinks, thermal interface materials (TIMs) must provide efficient heat transport in the through-plane direction. We report on the enhanced thermal conduction of $Al_2O_3-based$ polymer composites, fabricated by the surface wetting and texturing of thermally conductive hexagonal boron nitride(h-BN) nanoplatelets with large anisotropy in morphology and physical properties. The thermally conductive polymer composites were prepared with hybrid fillers of $Al_2O_3$ macro beads and surface modified h-BN nanoplatelets. Hexagonal boron nitride (h-BN) has high thermal conductivity and is one of the most suitable materials for thermally conductive polymer composites, which protect electronic devices by efficient heat dissipation. In this study, we synthesized hexagonal boron nitride nanoparticles by the pyrolysis of cost effective precursors, boric acid and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, hexagonal boron nitride nanoparticles with diameters of ca. 50nm were synthesized. We demonstrate that the addition of a small amount of calcium fluoride ($CaF_2$) during the preparation of the melamine borate adduct significantly enhanced the crystallinity of the h-BN and assisted the growth of nanoplatelets up to 100nm in diameters. The addition of a small amount of h-BN enhanced the thermal conductivity of the $Al_2O_3-based$ polymer composites, from 1.45W/mK to 2.33 W/mK.

The Effect of Hot Stamping Operation Condition on the Mechanical Properties (핫스탬핑 공정조건에 따른 기계적 특성)

  • Kim, H.D.;Moon, M.B.;Lee, S.H.;Yoon, K.W.;Yoo, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.317-320
    • /
    • 2008
  • The Hot Stamping process, which is the hot pressing of steel parts using cold dies. can utilize both case of shaping and high strength due to the hardening effect of rapid quenching during the pressing. We carried out experiments of quenching rate and tempering treatments at temperatures of $200^{\circ}C$ and $300^{\circ}C$ and different soaking times. Tn this study, the mechanical properties and microstructure of micro boron alloyed steels after heat treatments are compared.

  • PDF

Effect of chemical composition on the weldability of quenched and tempered high strength steels (주질고장력강의 용접성에 미치는 화학조성의 영향)

  • 장웅성;김숙환;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1988
  • In fabrication of various welded structures made of high strength steels, the occurence of hydrogen assisted cracking and embrittlement in HAZ is prime importance. The present work was carried out to clarify the effect of chemical compositions, especially B and/or Ti addition on the cold cracking susceptibility and HAZ embrittlement in low crabon equivalent steel. Tests results showed that the addtio of optimum boron content in steel with low Pem value i.e., below 0.20 % was the best way to improve the weldability as well as the mechanicla properties of $60kg/mm^2$ grade quenched and tempered high strength steels.

  • PDF

Luminescent characteristics of a blue-emitting $CaAl_2Si_2O_8:Eu^{2+}$ phosphor and the effect of boron ion substitution

  • Kwon, Byoung-Hwa;Vaidyanathan, Sivakumar;Li, Hui;Jang, Ho-Seoung;Yoo, Hyoung-Sun;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.578-580
    • /
    • 2008
  • Blue-emitting $CaAl_2Si_2O_8:Eu^{2+}(CAS:Eu^{2+})$ phosphor, prepared by solid-state reaction, is described in this paper. We researched the effect of boron ion substitution in the host materials. The phase and luminescent properties were investigated using the powder X-ray diffraction(XRD) and photoluminescence(PL) spectra.

  • PDF

A Study on the Fluorine Effect of Direct Contact Process in High-Doped Boron Phosphorus Silicate Glass (BPSG)

  • Kim, Hyung-Joon;Choi, Pyungho;Kim, Kwangsoo;Choi, Byoungdeog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.662-667
    • /
    • 2013
  • The effect of fluorine ions, which can be reacted with boron in high-doped BPSG, is investigated on the contact sidewall wiggling profile in semiconductor process. In the semiconductor device, there are many contacts on $p^+/n^+$ source and drain region. However these types of wiggling profile is only observed at the $n^+$ contact region. As a result, we find that the type of plug implantation dopant can affect the sidewall wiggling profile of contact. By optimizing the proper fluorine gas flow rate, both the straight sidewall profile and the desired electrical characteristics can be obtained. In this paper, we propose a fundamental approach to improve the contact sidewall wiggling profile phenomena, which mostly appear in high-doped BPSG on next-generation DRAM products.

The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy (저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향)

  • Kwon, S.H.;Park, J.H.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

Superconducting Properties of Mg(B1-xCx)2 Bulk Synthesized Using Magnesium and Glycerin-treated Boron Powder (마그네슘과 글리세린 처리한 붕소 분말로 합성한 Mg(B1-xCx)2의 초전도 특성)

  • Kim, Yi-Jeong;Jun, Byung-Hyuk;Park, Soon-Dong;Tan, Kai Sin;Kim, Bong-Goo;Sohn, Jae-Min;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.182-187
    • /
    • 2008
  • Carbon was known to be one of effective additives which can improve the flux pinning of $MgB_2$ at high magnetic fields. In this study, glycerin $(C_3H_8O_3)$ was selected as a chemical carbon source for the improvement of critical current density of $MgB_2$. In order to replace some of boron atoms by carbon atoms, the boron powder was heat-treated with liquid glycerin. The glycerin-treated boron powder was mixed with an appropriate amount of magnesium powder to $MgB_2$ composition and the powder pallets were heat treated at $650^{\circ}C\;and\;900^{\circ}C$ for 30 min in a flowing argon gas. It was found that the superconducting transition temperature $(T_c)$ of $Mg(B_{1-x}C_x)_2$ prepared using glycerin-treated boron powder was 36.6 K, which is slightly smaller than $T_c$(37.1 K) of undoped $MgB_2$. The critical current density $(J_c)$ of $Mg(B_{1-x}C_x)_2$ was higher than that of undoped $MgB_2$ and the $T_c$ improvement effect was more remarkable at higher magnetic fields. The $T_c$, decrease and $J_c$ increase associated with the glycerin treatment for boron powder was explained in terms of the carbon substitution to boron site.