• Title/Summary/Keyword: borehole thermal resistance

Search Result 28, Processing Time 0.029 seconds

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Effect of Some Parameters on Ground Effective Thermal Conductivity (지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향)

  • Choi, Jae-Ho;Lim, Hyo-Jae;Kong, Hyoung-Jin;Sohn, Byong-Hu
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.33-38
    • /
    • 2008
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

Development of a Three-Dimensional Numerical Model of the Vertical Ground-Coupled Heat Exchanger Considering the Effects of the Thermal Capacity (내부 열용량을 고려한 수직 지중열교환기의 3차원 수치 모델 개발)

  • Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.293-298
    • /
    • 2016
  • A three-dimensional (3D) numerical model of the vertical ground-coupled heat exchanger is useful for analyzing the modern ground source heat pump system. Furthermore, a detailed description of the inner side of the exchanger allows to account for the effects of the thermal capacity. Thus, both methods are included in the proposed numerical model. For the ground portion, a FDM (Finite Difference Method) scheme has been applied using the Cartesian coordinate system. Cylindrical grids are applied for the borehole portion, and the U-tube configuration is adjusted at the grid, keeping the area and distance unchanged. Two sub-models are numerically coupled at each time-step using an iterative method for convergence. The model is validated by a reference 3D model under a continuous heat injection case. The results from a periodic heat injection input show that the proposed thermal capacity model reacts more slowly to the changes, resulting in lower borehole wall temperatures, when compared with a thermal resistance model. This implies that thermal capacity effects may be important factors for system controls.

An Analysis on the Bleeding Effect of SCW Ground Heat Exchanger using Thermal Response Test Data (열응답시험 데이터를 이용한 SCW형 지중열교환기 블리딩 효과 분석)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.512-520
    • /
    • 2020
  • Recently, the applications of the standing column well (SCW) ground heat exchanger (GHX) have increased significantly in Korea as a heat transfer mechanism of ground source heat pump systems (GSHP) because of its high heat capacity and efficiency. Among the various design and operating parameters, bleeding was found to be the most important parameter for improving the thermal performance, such as ground thermal conductivity and borehole thermal resistance. In this study, a bleeding analysis model was developed using the thermal response test data, and the effects of bleeding rates and bleeding locations on the thermal performance of anSCW were investigated. The results show that, when the ground water flows into the top of anSCW, the time variation of circulating water temperature decreased with increasing bleeding rate, and the ground thermal conductivity increases by as much as 179% with a 30% bleeding rate. When the ground water flows into the bottom of the SCW, the circulating water temperatures become almost constant after the increase in the beginning time because the circulating water exchanges heat with the ground structure before mixing with the ground water at the bottom.

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Dynamic Simulation of Ground Source Heat Pump with a Vertical U-tube Ground Heat Exchanger (수직형 U자 관 지중 열교환기를 갖는 지열원 열펌프의 동적 시뮬레이션)

  • Lee, Myung-Taek;Kim, Young-Il;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.372-378
    • /
    • 2007
  • GHX (Geothermal Heat Exchanger) design which determines the performance and initial cost is the most important factor in ground source heat pump system. Performance of GHX is strongly dependent on the thermal resistance of soil, grout and pipe. In general, GHX design is based on the static simulation program. In this study, dynamic simulation has been peformed to analyze the variation of system performance for various GHX parameters. Line-source theory has been applied to calculate the variation of ground temperature. The averaged weather data measured during a 10-year period $(1991\sim2000)$ in Seoul is used to calculate cooling and heating loads of a building with a floor area of $100m^2$. The simulation results indicate that thermal properties of borehole play significant effect on the overall performance. Change of grout thermal conductivity from 0.4 to $3.0W/(m^{\circ}C)$ increases COP of heating by 9.4% and cooling by 17%. Change of soil thermal conductivity from 1.5 to $4.0W/(m^{\circ}C)$ increases COP of heating by 13.3% and cooling by 4.4%. Change of GHX(length from 100 to 200 m increases COP of heating by 10.6% and cooling by 10.2%. To study long term performance, dynamic simulation has been conducted for a 20-year period and the result showed that soil temperature decreases by $1^{\circ}C$, heating COP decreases by 2.7% and cooling COP decreases by 1.4%.

A Study on Regional Distribution of the Ground Effective Thermal Conductivity (지중 유효 열전도도의 지역별 분포)

  • Kong, Hyoung Jin;Kwon, Soon-Ki;Ji, Seung Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • Ground source heat pump(GSHP) systems is known as environmental friendly and energy saving. Especially a ground heat exchanger is an important unit that determines the thermal performance of a system and initial cost. In design phase of vertical GSHP system, it is recommended that the effective borehole thermal resistance, be determined from in-situ thermal response test. In this study, ground effective thermal conductivity was categorized by a region. As a result of the study, the ground thermal conductivity of national average was analyzed as 2.56 W/mK. The highest regional average of thermal conductivity is 2.68 W/mK in Seoul, and the lowest is 2.28 W/mK in Busan. Also, the thermal conductivity on the coast has been analyzed approximately 30% lower than the average.