• Title/Summary/Keyword: borehole instability

Search Result 6, Processing Time 0.018 seconds

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Stability Analysis for the Pohang Deep Geothermal Borehole (포항 심부 지열 시추공의 안정성 분석 연구)

  • Lee, Min-Jung;Chang, Chan-Dong;Lee, Jun-Bok;Lee, Tae-Jong;Hwang, Se-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.204-213
    • /
    • 2008
  • This paper presents the analysis about the stability of the Pohang deep geothermal borehole drilled in 2006. Severe wellhole instability problems such as collapse and tight hole occurred in weak rocks while drilling. Optimal mud pressure (mud window) required to prevent instability problems during drilling is obtained from analysis on in-situ stress and rock strength. The window is bounded by vertical stress in its upper limit and by either collapse pressure or pore pressure in its lower limit. Mud window varies with different types of rocks. In the top-most semi-consolidated mudstone formation, no mud window can secure borehole stability. In some weak rock types (basic dyke and crystal tuff), the borehole pressure needs to be higher by $50{\sim}60%$ than hydrostatic pressure. That means a mud density of 1.5 g/$cm^3$ or higher should be applied during drilling in order to prevent excessive collapse around the borehole.

Geomechanical study of well stability in high-pressure, high-temperature conditions

  • Moradi, Seyyed Shahab Tabatabaee;Nikolaev, Nikolay I.;Chudinova, Inna V.;Martel, Aleksander S.
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.331-339
    • /
    • 2018
  • Worldwide growth in hydrocarbon and energy demand is driving the oil and gas companies to drill more wells in complex situations such as areas with high-pressure, high-temperature conditions. As a result, in recent years the number of wells in these conditions have been increased significantly. Wellbore instability is one of the main issues during the drilling operation especially for directional and horizontal wells. Many researchers have studied the wellbore stability in complex situations and developed mathematical models to mitigate the instability problems before drilling operation. In this work, a fully coupled thermoporoelastic model is developed to study the well stability in high-pressure, high-temperature conditions. The results show that the performance of the model is highly dependent on the truly evaluated rock mechanical properties. It is noted that the rock mechanical properties should be evaluated at elevated pressures and temperatures. However, in many works, this is skipped and the mechanical properties, which are evaluated at room conditions, are entered into the model. Therefore, an accurate stability analysis of high-pressure, high-temperature wells is achieved by measuring the rock mechanical properties at elevated pressures and temperatures, as the difference between the model outputs is significant.

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Field trial of expandable profile liners in a deep sidetrack well section and optimizable schemes approach for future challenges

  • Zhao, Le;Tu, Yulin;Xie, Heping;Gao, Mingzhong;Liu, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.271-281
    • /
    • 2022
  • This study discusses challenges of running expandable profile liners (EPLs) to isolate trouble zones in directional section of a deep well, and summary the expandable profile liner technology (EPLT) field trial experience. Technically, the trial result reveals that it is feasible to apply the EPLT solving lost-circulation control problem and wellbore instability in the deep directional section. Propose schemes for optimizing the EPLT operation procedure to break through the existing bottleneck of EPLT in the deep directional section. Better-performing transition joints are developed to improve EPL string reliability in high borehole curvature section. High-performing and reliable expanders reduce the number of trips, offer excellent mechanical shaping efficiency, simplify the EPLT operation procedure. Application of the expansion and repair integrated tool could minimize the risk of insufficient expansion and increase the operational length of the EPL string. The new welding process and integrated automatic welding equipment improve the welding quality and EPL string structural integrity. These optimization schemes and recent new advancements in EPLT can bring significant economic benefits and promote the application of EPLT to meet future challenges.

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.