• Title/Summary/Keyword: borehole Stoneley wave

Search Result 2, Processing Time 0.016 seconds

Detection of formation boundaries and permeable fractures based on frequency-domain Stoneley wave logs

  • Saito Hiroyuki;Hayashi Kazuo;Iikura Yoshikazu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • This paper describes a method of detecting formation boundaries, and permeable fractures, from frequency-domain Stoneley wave logs. Field data sets were collected between the depths of 330 and 360 m in well EE-4 in the Higashi-Hachimantai geothermal field, using a monopole acoustic logging tool with a source central frequency of 15 kHz. Stoneley wave amplitude spectra were calculated by performing a fast Fourier transform on the waveforms, and the spectra were then collected into a frequency-depth distribution of Stoneley wave amplitudes. The frequency-domain Stoneley wave log shows four main characteristic peaks at frequencies 6.5, 8.8, 12, and 13.3 kHz. The magnitudes of the Stoneley wave at these four frequencies are affected by formation properties. The Stoneley wave at higher frequencies (12 and 13.3 kHz) has higher amplitudes in hard formations than in soft formations, while the wave at lower frequencies (6.5 and 8.8 kHz) has higher amplitudes in soft formations than in hard formations. The correlation of the frequency-domain Stoneley wave log with the logs of lithology, degree of welding, and P-wave velocity is excellent, with all of them showing similar discontinuities at the depths of formation boundaries. It is obvious from these facts that the frequency-domain Stoneley wave log provides useful clues for detecting formation boundaries. The frequency-domain Stoneley wave logs are also applicable to the detection of a single permeable fracture. The procedure uses the Stoneley wave spectral amplitude logs at the four frequencies, and weighting functions. The optimally weighted sum of the four Stoneley wave spectral amplitudes becomes almost constant at all depths, except at the depth of a permeable fracture. The assumptions that underlie this procedure are that the energy of the Stoneley wave is conserved in continuous media, but that attenuation of the Stoneley wave may occur at a permeable fracture. This attenuation may take place at anyone of the four characteristic Stoneley wave frequencies. We think our multispectral approach is the only reliable method for the detection of permeable fractures.

Sonic Velocity Determination using Data from Monopole and Dipole Sources (음파검층에서의 속도결정 - monopole및 dipole소스의 비교 -)

  • Kong, Nam-Young;Lee, Sung-Jin;Zhao, Weijun;Kim, Yeoung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.225-231
    • /
    • 2006
  • As a study of efficient velocity analysis in sonic log, several preexisting techniques have been adopted to the sonic data taken from model borehole in Kangwon National University, and the results were compared. For the data taken from monopole source, Slowness-Time Coherence method which is a common technique for nondispersive wave was used. For the data taken from dipole source, conventional STC and Tang's method(Tang et al., 1995) were used. From the good matches in the P and Stoneley wave velocities, we could confirm the effectiveness of STC computation. We also could find that shear velocity obtained from Tang's method were exactly matched with shear velocity obtained from monopole source, and that the velocity were within the range of S wave velocity values obtained from conventional STC application to dispersive flexural waves.

  • PDF